作者简介:Boblee,人工智能硕士毕业,擅长及爱好Python,基于Python研究人工智能、群体智能、区块链等技术,并使用Python开发前后端、爬虫等。
一、粒子群算法介绍
1、初始化
首先,我们设置最大迭代次数,目标函数的自变量个数,粒子的最大速度,位置信息为整个搜索空间,我们在速度区间和搜索空间上随机初始化速度和位置,设置粒子群规模为M,每个粒子随机初始化一个飞翔速度。
2、个体极
转载
2021-08-11 11:08:11
832阅读
一、引言 哈喽大家好,有一段时间没更新Blog了,最近身体不太舒服哈,今天开始继续更了。言归正传,这次要讲的是“粒子群算法”。这个算法是由两个科学家在1995年,根据对鸟类捕食行为的研究所得到启发而想出来的。好的,接下来让我们开始吧。二、鸟类捕食行为 鸟妈妈有7个鸟宝宝,有一天,鸟妈妈让鸟宝宝们自己去找虫子吃。于是鸟宝宝们开始了大范围的捕食行为。一开始鸟宝宝们不知道哪里可以找得到虫
文章目录算法原理Python实现算法测试 算法原理粒子群算法,缩写为PSO(Particle Swarm Optimization),是一种非线性寻优算法,其特点是实现简单、收敛速度快,对多元函数的局部最优有较好的克服能力。所谓粒子群,就是一群粒子,每个粒子都有自己的位置和速度,记第个粒子的位置为,速度为。如果没有任何外加条件,这群粒子的轨迹,将完全由某一时刻的位置和速度决定。而想要通PSO进行
转载
2023-10-19 06:49:03
130阅读
# 粒子群算法 Python 实现指南
粒子群算法(Particle Swarm Optimization,PSO)是一种用于解决优化问题的启发式算法。它通过模拟鸟群觅食的行为找到问题的最优解。在这篇文章中,我将指导你如何在 Python 中实现粒子群算法,步骤简单清晰,适合刚入行的小白。
## 实现流程
我们将实现粒子群算法的整个流程,下面的表格展示了主要步骤。
| 步骤 | 描述 |
粒子群算法原理很简单,用matlab和python都很快实现编程。程序:参数部分,需要修改的可以修改。这个程序实现的是基本粒子群算法,对于提升粒子群算法的表现,可以在上面进行更多的功能添加。import numpy as np
import random
import matplotlib.pyplot as plt
#----------------------PSO参数设置---------
转载
2023-06-05 23:00:21
334阅读
介绍 粒子群算法(Particle swarm optimization,PSO)是模拟群体智能所建立起来的一种优化算法,主要用于解决最优化问题(optimization problems)。1995年由 Eberhart和Kennedy 提出,是基于对鸟群觅食行为的研究和模拟而来的。 假设一群鸟在觅食,在
转载
2023-11-06 15:40:22
130阅读
PSOIndividual.py
import numpy as np
import ObjFunction
import copy
class PSOIndividual:
'''
individual of PSO
'''
def __init__(self, vardim, bound):
'''
vardim: di
转载
2023-05-31 23:37:29
517阅读
粒子群算法简介一、粒子群算法的历史 粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。整个系统的演变或进化包括:新层次的产生(小鸟的出生)
转载
2023-09-22 06:31:53
159阅读
粒子群算法最先从观察鸟的捕食行为出发得到的仿生算法,它的原始算法用于求解无约束的多变量优化问题,如二元函数在给定区域内的极值问题,后来被扩展到求解TSP问题,动态优化问题和多目标优化问题。 粒子群算法的基本思想如下。一只鸟出去捕食,它当然是希望找到食物最多的位置。假设
转载
2023-08-15 17:09:06
116阅读
粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为 PSO, 是近年来发展起来的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover)
转载
2023-08-10 16:52:38
108阅读
import random
class Particle:
def __init__(self, dim):
self.position = [random.uniform(-10, 10) for i in range(dim)]
self.velocity = [random.uniform(-1, 1) for i in range(dim)]
转载
2024-04-13 12:13:23
74阅读
粒子群算法是比较有名的群体智能算法之一,其他群体智能算法还包括蚁群算法、鱼群算法、人工蜂群算法等。今天学习一下粒子群算法。 文章目录算法原理(Inspiration)优化过程python实现参数调优w参数的设置参数
c
转载
2023-08-14 15:40:37
147阅读
# 使用Python实现粒子群算法动画
粒子群优化(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,广泛应用于工程、经济等领域。实现一个粒子群算法的动画可以帮助我们更好地理解PSO的工作原理。本文将通过详细步骤,带你一步步实现一个简单的粒子群算法动画。
## 流程概览
实现粒子群算法动画的步骤如下:
| 步骤 | 描述
题目:一种新的离散粒子群优化算法中文摘要 粒子群优化算法在许多优化问题上表现得非常好。粒子群优化算法的缺点之一是假设算法中的变量为连续变量。本文提出一个新的粒子群优化算法,能够优化离散变量。这个新算法被称为整数和分类粒子群优化算法,该算法融合了分布估计算法的思想,即粒子代表概率分布而不是解的值,并且PSO更新修改了概率分布。本文
转载
2023-08-25 17:31:00
294阅读
1、概述粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过
转载
2023-11-09 12:48:16
0阅读
粒子群算法的实现基本概念:鸟群中有个体和群体,个体和群体的信息是可以互通的。个体在随机搜寻食物的过程中,只要跟踪离食物最近的群体,就能最有效地找到食物。(1)粒子:优化问题的候选解,指鸟群中的独立个体;(2)位置:候选解所在的位置,即鸟群个体的位置;(3)速度:粒子的移动速度;(4)适应度:评价粒子优劣的值,一般为优化目标函数的数值;(5)个体极值:单个粒子迄今为止找到的最佳位置;(6)群体极值:
转载
2024-08-02 12:45:01
38阅读
一、粒子群算法理论粒子群算法来源于鸟类集体活动的规律性,进而利用群体智能建立简化模型。它模拟的是鸟类的觅食行为,将求解问题的空间比作鸟类飞行的时间,每只鸟抽象成没有体积和质量的粒子,来表征一个问题的可行解。1.1 粒子群算法建模粒子群算法首先在给定的解空间中随机初始化粒子群,待优化问题的变量数决定了解空间的维数。每个粒子有了初始位置与初始速度,然后迭代寻优。每一次迭代中,每个粒子通过跟踪两个极值来
转载
2024-02-29 11:26:53
136阅读
目录1.算法1.1.原理1.2.性能比较1.3.步骤2.代码2.1.源码及注释 1.算法1.1.原理建议没接触过粒子群算法的朋友先看较为基础的全局粒子群算法原理及介绍,以下博文链接有详细的讲解、代码及其应用举例:【Simulink】粒子群算法(PSO)整定PID参数(附代码和讲解)这里就介绍一下全局粒子群算法和混合粒子群算法的区别。全局粒子群算法(General PSO)将粒子速度矢量影响因子分
转载
2023-09-26 09:36:38
88阅读
粒子群代码(MatLab)clc;
clear;
% 粒子群算法中的预设参数(参数的设置不是固定的,可以适当修改)
particleNumber = 30; % 粒子数量
variableNumber = 3; % 变量个数
c1 = 2; % 每个粒子的个体学习因子,也称为个体加速常数
c2 = 2; % 每个粒子的社会学习因子,也称为社会加速常数
w = 0.9; % 惯性权重
i
转载
2023-12-04 15:19:38
119阅读
一.产生背景 ❃粒子群算法(particleswarm optimization,PSO)由Kennedy和Eberhart在1995年提出,该算法对于Hepper的模拟鸟群(鱼群)的模型进行修正,以使粒子能够飞向解空间,并在最好解处降落,从而得到了粒子群优化算法。❃同遗传算法类似,也是一种基于群体叠代的,但并没有遗传算法用的交叉以及变异,而是粒子在解空间追随最优的粒子进行
转载
2024-01-15 10:34:13
65阅读