win10使用tensorflow和tensorflow-gpu时踩过的坑最初要使用tensorflow-gpu是因为要使用inception-resnet-v2,这个模型在cpu上,速度实在是太慢,两天1000个batch的样子,实在难受。于是搬出了我四年前的电脑(NIVIDA 840M)来准备用GPU。遇到了一些坑,一一解决了,记录一下。first最开始的时候,以为安装了tensorfl
转载 2024-04-03 08:53:05
138阅读
的一 前言最近写了个又臭又长的代码来验证idea,效果还行但速度太慢,原因是代码中包含了一个很耗时的模块,这个模块需要连续执行百次以上才能得到最终结果,经过实测模块每次执行消耗约20ms,而且两次执行之间没有先后关系,为了保证系统的实时性,我决定将这一部分运算放在GPU上执行。二 环境配置(dirver CUDA + runtime CUDA)要想使用GPU加速计算,首先需要一块性能还可以的Nvi
内容:Matlab simulink 给数学建模和解非线性方程提供了莫大的便利,但是对于大型仿真程序,smulink仿真速度使人叫苦不迭。总体来说,影响simulink仿真速度有以下几个因素,同时将解决方法奉上:(1)参数设置问题,变步长还是定步长,定步长的大小,求解方法(a)变步长可以大大加快仿真速度,但同时也可能带来结果不准确的问题。(b)定步长的不长越大仿真时间与少,仿真时间的长短大致与仿真
这几天学习了无监督学习聚类算法Kmeans,这是聚类中非常简单的一个算法,它的算法思想与监督学习算法KNN(K近邻算法)的理论基础一样都是利用了节点之间的距离度量,不同之处在于KNN是利用了有标签的数据进行分类,而Kmeans则是将无标签的数据聚簇成为一类。接下来主要是我对《机器学习实战》算法示例的代码实现和理解。     首先叙述下算法项目《对地图上的俱乐部进行聚类
Ubuntu18.04.2使用GPU跑程序最简单的方法!安装CUDA9.0 以及CUDNN7.1还有Tensorflow 对应GPU版本亲测有效!注意!别的系统不一定适用但大部分流程相同今年考了研究生,研究课题需要网络,代码以及数据都准备好,我自己的CPU跑了一下,7个小时才完一边!我的笔记本是某想G50,14年本科大一时候买的,现在已经不堪入目了,好在导师有独显GPU,就让我使用,但是装了
转载 2023-11-02 11:00:31
230阅读
在进行大规模数据处理和科学计算时,通常需要利用GPU的并行计算能力来加速运算过程。Python是一种流行的编程语言,而NumPy库则是Python的一个重要数值运算库。那么,如何在Python中利用GPU来加速NumPy的计算呢?答案就是使用PyCUDA和CuPy库。 PyCUDA是一个Python绑定库,它允许Python与NVIDIA的CUDA并行计算平台交互。而CuPy则是一个基于Nump
原创 2024-06-21 07:02:01
190阅读
1、GPU发展简介自1999年NVIDIA发布第一款GPU以来,GPU的发展就一直保持了很高的速度。为了实时生成逼真3D图形,GPU不仅采用了最先进的半导体制造工艺,在设计上也不断创新。传统上,GPU的强大处理能力只被用于3D图像渲染,应用领域受到了限制。随着以CUDA为代表的GPU通用计算API的普及,GPU在计算机中的作用将更加重要,GPU的含义也可能从图形处理器(Graphic Proces
转载 2024-03-27 16:20:33
68阅读
Tensorflow环境下的深度学习框架的配置主要包含以下几步:0、前言1、PyCharm的安装步骤:2、Python的安装步骤:3、AnaConda的安装步骤:4、CUDA的安装步骤:5、cuDNN安装步骤:6、Tensorflow—GPU配置步骤:7、在PyCharm中使用Tensorflow 0、前言我们需要安装的内容如下:Windows10 操作系统 Pycharm :python的开发
转载 2024-05-07 10:41:10
586阅读
1 前言原料:我有两台电脑,一台是Win10系统的小米笔记本12.5(简称为A电脑),一台是Ubuntu系统的小米游戏本(简称为B电脑)。A电脑没有GPU,没有配置任何深度学习环境;而B电脑的GPU是GTX 1060,配置好了深度学习环境,已经能用CUDA代码了。A电脑和B电脑使用的IDE都是VS Code。需求:代码调试:因为B电脑有GPU,我希望能够用A电脑调试B电脑的代码。场景1(远程调试
前言为了在实验室工作站搭个gpu训练环境,前后大概花了一整天时间搭完。先简要说一下经验:先找一篇新一点的教程进行配置,我这边只是给个参考;最好暂时不要用最新的CUDA、py、tf,因为很有可能不支持。配置显卡:GTX 1070Python 3.6.2CUDA 9.0cuDNN 7.5 CUDA 9.0tensorflow-gpu 1.10这都9012年了,Py已经3.7,CU
# 使用 GPU 加速 Python 计算:解决一个实际问题 在当今的计算密集型应用场景中,深度学习、图像处理和大数据分析等任务对计算性能的要求越来越高。传统的 CPU 在处理复杂的数学运算时,往往存在性能瓶颈。与此相比,GPU (图形处理单元) 由于其并行计算的能力,成为了加速计算的重要选择。 本文将演示如何利用 GPU 来加速 Python 中的计算,并通过一个实际的示例来解决一个常见问题
原创 7月前
236阅读
 作者本人是想利用Tensorflow进行VGG-16框架训练,一开始的CPU,训练起来心态,都可以烤牛排,就想搭载GPU版的,在搭建tensorflow-gpu的时候,由于一开始装了个python版本,在Anaconda上面创建虚拟环境的时候老是会出现混乱。所以建议大家就仅用Anaconda,挺好用的。个人建议:注意版本选择,以及你自己的驱动(cuda8.0+cudnn6.0+Ana
# GPUPython代码的科学探索 在机器学习、深度学习和科学计算的领域中,CPU(中央处理单元)对于执行计算任务一直扮演着重要的角色。但是,随着数据量的增加和计算复杂度的提升,GPU(图形处理单元)的出现为我们提供了一个高效的计算替代方案。GPU的并行处理能力使得它在处理大量数据和复杂的计算时展现了出色的性能。 ## 什么是GPUGPU最初设计用于处理图形渲染,如3D游戏中的图像
原创 2024-09-29 06:22:26
53阅读
一、激光slam自我总结介绍主要分为基于滤波的和基于图优化的slam,,,现在主流的的算法有gmapping,这很经典,大学里初学经常用。slam定义: Localization:给定地图下估计机器人的位姿 Mapping:给定位姿下估计环境地图 SLAM:同时估计机器人的位姿和环境地图 这里主要就是位姿(定位)和环境地图激光slam输入有:IMU(惯性测量单元),轮式里程计(Wheel Odom
文章目录1、k近邻分类2、sklearn中的k近邻函数2.1、KNeighborsClassifier2.2、fit2.3、predict3、收集和预处理数据4、训练和测试 手写识别是不是很高大上?但是,只要你想学,还是对你很友好的。 Python大法好啊,Python中有好几种机器学习通用库,提供了类似于STL那样的算法模板函数。由于Python函数参数传递的特殊用法,它们还支持手动调参。目
在仿真的时候添加适当的物理场,在系统中添加载荷及约束。添加物理场这里添加的都是单接口的物理场。 这是一个支架热应力分析教学案例。 我们需要定义一个热物理场(这个定义过程通用)添加物理场确定你的模型应用于哪个物理领域。如果你选择创建模型向导来创建模型的时候,这一步已经在选择物理场中选择完了 如果是创建空模型进入的,在点击添加物理场后,从右侧选择你要添加的场。 添加后就可以在左侧功能树下见到,一个物理
要在 GPU 上使用 `ollama` 模型,我经历了一系列的步骤,从环境配置到调试,最终实现了高效的模型运行。在这篇博文中,我将详细记录这个过程。 首先,进行环境配置。这一阶段需要确保所有依赖项都正确设置。 1. 安装需要的包和工具: - CUDA Toolkit - cuDNN - NVIDIA 驱动程序 - `ollama` 工具 2. 安装步骤展示: ``
原创 1月前
264阅读
机器学习既是一门科学,也是一种艺术。纵观各类机器学习算法,并没有一种普适的解决方案或方法。事实上,有几个因素会影响你对机器学习算法的选择。有些问题是非常特别的,需要用一种特定的解决方法。例如,如果你对推荐系统有所了解,你会发现它是一类很常用的机器学习算法,用来解决一类非常特殊的问题。而其它的一些问题则非常开放,可能需要一种试错方法(例如:强化学习)。监督学习、分类、回归等问题都是非常开放的,可以被
小白学TensorFlow(一)tensorflow安装在安装之前,您必须选择以下类型的TensorFlow之一来安装:TensorFlow仅支持CPU支持。如果您的系统没有NVIDIA®GPU,则必须安装此版本。请注意,此版本的TensorFlow通常会更容易安装(通常在5或10分钟内),因此即使您有NVIDIA GPU,建议先安装此版本。TensorFlow支持GPU。TensorFlow程序
转载 2024-05-26 17:40:50
59阅读
深度学习怎么代码?从事深度学习的研究者都知道,深度学习代码需要设计海量的数据,需要很大很大很大的计算量,以至于CPU算不过来,需要通过GPU帮忙,今天怎么教大家免费使用GPU深度学习代码。深度学习怎么代码?Colabortory是一个jupyter notebook环境,它支持python2和python3,还包括TPU和GPU加速,该软件与Google云盘硬盘集成,用户可以轻松共享项目或将
  • 1
  • 2
  • 3
  • 4
  • 5