1、GPU发展简介自1999年NVIDIA发布第一款GPU以来,GPU的发展就一直保持了很高的速度。为了实时生成逼真3D图形,GPU不仅采用了最先进的半导体制造工艺,在设计上也不断创新。传统上,GPU的强大处理能力只被用于3D图像渲染,应用领域受到了限制。随着以CUDA为代表的GPU通用计算API的普及,GPU在计算机中的作用将更加重要,GPU的含义也可能从图形处理器(Graphic Proces
转载 2024-03-27 16:20:33
68阅读
要在 GPU 上使用 `ollama` 模型,我经历了一系列的步骤,从环境配置到调试,最终实现了高效的模型运行。在这篇博文中,我将详细记录这个过程。 首先,进行环境配置。这一阶段需要确保所有依赖项都正确设置。 1. 安装需要的包和工具: - CUDA Toolkit - cuDNN - NVIDIA 驱动程序 - `ollama` 工具 2. 安装步骤展示: ``
原创 1月前
264阅读
机器学习模型训练之GPU使用1.电脑自带GPU2.kaggle之免费GPU3.amazon SageMaker Studio Lab 免费GPU使用推荐 深度学习框架由大量神经元组成,它们的计算大多是矩阵运算,这类运算在计算时涉及的数据量较大,但运算形式往往只有加法和乘法,比较简单。我们计算机中的CPU可以支持复杂的逻辑运算,但是CPU的核心数往往较少,运行矩阵运算需要较长的时间,不适合进行深
Preface:fine-tuning到底是什么? 在预训练模型层上添加新的网络层,然后预训练层和新网络层联合训练。 文本分类的例子最典型了,最后加一个Dense层,把输出维度降至类别数,再进行sigmoid或softmax。 比如命名实体识别,在外面添加BiLSTM+CRF层,就成了BERT+BiLSTM+CRF模型。 这个例子可能不太典型,因为还是加了繁重的网络结构。 做多分类和多标签分类时,
导语计算机在执行程序时,每条指令都是在CPU中执行的,而执行指令过程中,涉及数据的读取和写入。由于程序运行过程中的临时数据是存放在主存(物理内存)当中的,这时就存在一个问题,由于CPU执行速度很快,而从内存读取数据和向内存写入数据的过程跟CPU执行指令的速度比起来要慢的多,因此如果任何时候对数据的操作都要通过和内存的交互来进行,会大大降低指令执行的速度。因此在CPU里面就有了高速缓存。当程序在运行
win10使用tensorflow和tensorflow-gpu时踩过的坑最初要使用tensorflow-gpu是因为要使用inception-resnet-v2,这个模型在cpu上,速度实在是太慢,两天1000个batch的样子,实在难受。于是搬出了我四年前的电脑(NIVIDA 840M)来准备用GPU。遇到了一些坑,一一解决了,记录一下。first最开始的时候,以为安装了tensorfl
转载 2024-04-03 08:53:05
138阅读
Tabby连接服务器运行模型代码零、写在前面一、准备事项二、连接服务器三、配置python环境1、知识点(环境和解释器)(1)环境1)base环境2)虚拟环境(2)解释器2、在服务器中配置环境和解释器(1)安装Anaconda(2)创建虚拟环境1)PyTorch-GPU2)TensorFlow-GPU(3)安装所项目运行所需要的包1)pip和conda的区别2)使用pip或conda下载3)使用
现代 Mac 已经取得了长足的进步,为大学生挑选 Mac 的困难不在于找到值得信赖、便携和最新的东西; 相反,需要寻找满足学生需求的最佳工具。 这就是为什么在购买之前进行研究并了解专业要求和日常使用细节很重要的原因。那么最适合大学生的 MacBook该怎么选?最佳便携式 Mac凭借 13.3 英寸显示屏的简洁性, MacBook AIr 重量为 2.75 磅,配备英特尔酷睿 i5 处理器,可能是旅
转载 2024-08-21 19:46:19
89阅读
ollama模型怎么设置GPU 在深度学习及大规模模型训练的时代,有效利用 GPU 来提升模型的训练速度是至关重要的。Ollama 是一个强大的工具,但在很多时候,用户却在 GPU 设置上遇到了问题。以下是解决 "ollama 模型怎么设置 GPU" 问题的复盘记录。 ## 用户场景还原 在一个数据科学团队中,团队成员准备使用 Ollama 来进行大规模的深度学习模型的训练。为了加速训
原创 2月前
357阅读
的一 前言最近写了个又臭又长的代码来验证idea,效果还行但速度太慢,原因是代码中包含了一个很耗时的模块,这个模块需要连续执行百次以上才能得到最终结果,经过实测模块每次执行消耗约20ms,而且两次执行之间没有先后关系,为了保证系统的实时性,我决定将这一部分运算放在GPU上执行。二 环境配置(dirver CUDA + runtime CUDA)要想使用GPU加速计算,首先需要一块性能还可以的Nvi
测试faster-rcnn时,cpu计算速度较慢,调整代码改为gpu加速运算 将 with tf.Session() as sess: 替换为1 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9) 2 with tf.Session(config=tf.ConfigProto(gpu_options=gpu_option
转载 2024-03-05 12:10:43
619阅读
在进行大规模数据处理和科学计算时,通常需要利用GPU的并行计算能力来加速运算过程。Python是一种流行的编程语言,而NumPy库则是Python的一个重要数值运算库。那么,如何在Python中利用GPU来加速NumPy的计算呢?答案就是使用PyCUDA和CuPy库。 PyCUDA是一个Python绑定库,它允许Python与NVIDIA的CUDA并行计算平台交互。而CuPy则是一个基于Nump
原创 2024-06-21 07:02:01
190阅读
这几天学习了无监督学习聚类算法Kmeans,这是聚类中非常简单的一个算法,它的算法思想与监督学习算法KNN(K近邻算法)的理论基础一样都是利用了节点之间的距离度量,不同之处在于KNN是利用了有标签的数据进行分类,而Kmeans则是将无标签的数据聚簇成为一类。接下来主要是我对《机器学习实战》算法示例的代码实现和理解。     首先叙述下算法项目《对地图上的俱乐部进行聚类
内容:Matlab simulink 给数学建模和解非线性方程提供了莫大的便利,但是对于大型仿真程序,smulink仿真速度使人叫苦不迭。总体来说,影响simulink仿真速度有以下几个因素,同时将解决方法奉上:(1)参数设置问题,变步长还是定步长,定步长的大小,求解方法(a)变步长可以大大加快仿真速度,但同时也可能带来结果不准确的问题。(b)定步长的不长越大仿真时间与少,仿真时间的长短大致与仿真
Ubuntu18.04.2使用GPU跑程序最简单的方法!安装CUDA9.0 以及CUDNN7.1还有Tensorflow 对应GPU版本亲测有效!注意!别的系统不一定适用但大部分流程相同今年考了研究生,研究课题需要网络,代码以及数据都准备好,我自己的CPU跑了一下,7个小时才完一边!我的笔记本是某想G50,14年本科大一时候买的,现在已经不堪入目了,好在导师有独显GPU,就让我使用,但是装了
转载 2023-11-02 11:00:31
230阅读
讲得很好,记下来以后可以借鉴: 如何通第一个模型面对一个全新的任务时,可能会遇到深度神经网络的训练不收敛的情况:loss不下降或者计算过程中浮点数越界,处理这种情况有一些常见的技巧。总体的思路是尽量简化训练,使得网络参数很容易学,即使性能不够优,切忌在通第一个模型前就做很多为性能优化服务的、增加训练难度的事项,例如数据增强、网络加宽加深等。模型参数选择尽量找一个已经通过的、与当前任务相似的任
转载 2023-07-27 17:06:56
195阅读
Tensorflow环境下的深度学习框架的配置主要包含以下几步:0、前言1、PyCharm的安装步骤:2、Python的安装步骤:3、AnaConda的安装步骤:4、CUDA的安装步骤:5、cuDNN安装步骤:6、Tensorflow—GPU配置步骤:7、在PyCharm中使用Tensorflow 0、前言我们需要安装的内容如下:Windows10 操作系统 Pycharm :python的开发
转载 2024-05-07 10:41:10
586阅读
问题当从磁盘载入模型时,往往会太大或太小,你想将模型缩放到定义的大小。解决方案首先你需要定义一个模型的全局包围球,前面一个教程已经解释了。知道了这个包围球,你就可以知道模型的当前尺寸了。从这个尺寸,你可以知道需要将模型放大或所小多少。你也可以将这个缩放操作储存在root Bone矩阵中,这样缩放会施加到模型中所有Bone的所有矩阵上(可见教程4-9)。工作原理通常,你使用的模型是由不同的工具制作的
转载 2024-03-24 19:24:04
128阅读
多线程有什么好处?提高CPU的利用率,更好地利用系统资源,使用Monitor类可以同步静态/实例化的方法的全部代码或者部分代码段,使用不同的同步类创建自己的同步机制。多线程指从软件或者硬件上实现多个线程并发执行的技术。具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程提升整体处理性能。多线程是指程序中包含多个执行流,即在一个程序中可以同时运行多个不同制的线程来执行不同的任务,允许单
一直很想做cuda-GPU编程,很早就将CUDA9.0安装好了,后面就没怎么管它,忙别的去了。敲黑板,划重点,我科研还是很努力的,可是很多人看不见罢了。之前一直在使用粒子方法进行流体模拟,计算时间极其漫长,周末想了想,自己来做一个大型显式动力学分析软件,学学CUDA编程是不错的。所以现在为大家呈上热腾腾的一泡小白教程(调皮)。 首先到英伟达官网上下载安装CUDA最新版,要注册。其次,安装vs201
  • 1
  • 2
  • 3
  • 4
  • 5