“ 作为医电的一大重要必修知识,医学图像的处理可以说是十分硬核了。但不要慌,兵来将挡,水来土掩。打开matlab开始进阶吧!”认清对手——什么是数字图像? 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f在任何坐标点(x, y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语, 
这个论文看下来,有这么几个重点需要去掌握:将整张图片转化为多个patches,作为 transformer的序列输入输入的时候需要加入位置编码,三种位置编码:一维,二维,相对位置编码,这三种效果没有太大区别;transformer可以接受CNN的输出作为输入,作为一种transformer的混合结构,区别于VIT这种无卷积结构可能是由于缺乏inductive biases,数据集上直接训练的VIT
转载
2024-02-12 21:33:18
367阅读
目录1. idea1.1 实验思路1.2 灵感来源2. 实验设置3. 实验结果3.1 结果3.2 结果分析3.2.1 一个奇怪的现象3.2.2 分析4. 代码 写在前面:本实验并未获得预期的结果,更多的是当作实验记录。1. idea1.1 实验思路这个实验的思路是这样的:通过随机初始化(正态分布)的未经过训练的ResNet、ViT和SwinTransformer,来对ImangeNet-1k(2
今天要讲的模型属于深度学习(准确地说应该是卷积神经网络)在医学图像领域的应用,主要参考了一篇2015年的paper《U-Net: Convolutional Networks for Biomedical Image Segmentation》,正好通过这篇paper的学习来了解一下深度学习到底在图像问题领域是怎样运作的。我之前接触过简单的深度学习在图像领域的应用,就是对于手写数字1-9的识别,本
转载
2024-05-13 15:26:39
223阅读
目录一、背景二、提出问题三、解决问题四、网络结构详解CNN部分(ResNet50的前三层)transformer部分U-Net的decoder部分五、模型性能 开头处先说明下TransUNet的地位:它是第一个将transformer用于U型结构的网络
转载
2024-09-02 14:48:43
175阅读
、1. U-Net及相关变种综述文献:Medical Image segmentation review: The success of U-Net (这是一篇对Unet模型在医学图像应用上的整体回顾,并对主流模型进行了分类整理)图像分割任务分为两类:语义分割和实例分割语义分割:像素级的分类,将图像中所有像素划分为相应的类别实例分割:也需要基于语义分割识别同一类别中的不同对象。常见的医学成像方式:
转载
2024-09-30 10:48:57
183阅读
文章目录1.图像分割指标2. 两个问题3.IOU和假阳性率4. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure 1.图像分割指标前言 在医学分割算法中,通常医生的手绘标注作为金标准(Ground Truth,简称GT),其他算法分割的作为预测结果(Rseg,简称SEG)。分类问题 考虑一个二分类的情况,类别为1和0,我们将1和0分别作
计算机体系结构领域国际顶级会议每次往往仅录用几十篇论文,录用率在20%左右,难度极大。国内学者在顶会上开始发表论文,是最近十几年的事情。ASPLOS与HPCA是计算机体系结构领域的旗舰会议。其中ASPLOS综合了体系结构、编程语言、编译、操作系统等多个方向,HPCA则主要针对高性能体系结构设计。过去的三十多年里,它们推动了多项计算机系统技术的发展,RISC、RAID、大规模多处理器、Cluster
迁移学习在计算机视觉任务和自然语言处理任务中经常会用到,并且使用迁移学习,可将预训练模型左为新的模型起点,从而节省时间,提高效率。 一、特征提取:可以在预先训练好的网络结构后,添加或者修改一个简单的分类器,将源任务上预先训练好的网络模型作为另一个目标
转载
2024-05-28 10:12:28
416阅读
前言VGG-Net是由牛津大学VGG(Visual Geometry Group)提出,是2014年ImageNet竞赛定位任务的第一名和分类任务的第二名的中的基础网络。VGG可以看成是加深版本的AlexNet,都是Conv layer + Pooling layer + FC layer,它主要的贡献是展示出网络的深度(depth)是算法优良性能的关键部分,并且小卷积核表现出了更好的效
转载
2024-05-29 11:31:46
166阅读
论文:Christian Szegedy,Sergey Ioffe,Vincent Vanhoucke,Alex Alemi.Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning摘要 非常深的卷积神经网络已经称为最近几年CV任务中的
文章目录调用pytorch内置的模型的方法解读模型源码Resnet.py包含的库文件该库定义了6种Resnet的网络结构,包括每种网络都有训练好的可以直接用的.pth参数文件Resnet中大多使用3*3的卷积定义如下如何定义不同大小的Resnet网络定义Resnet18定义Resnet34Resnet类我们来看看网络的forward过程我们来看看残差Block连接是如何实现的 torchvisi
转载
2023-11-24 13:13:32
66阅读
一、前言 , 文章对经典的深度神经网络的发展做了一些概括,另外这里也加了一些补充说明二、Alexnet AlexNet是现代深度CNN的奠基之作。2012年,Hinton的学生Alex Krizhevsky提出了深度卷积神经网络模型AlexNet. AlexNet包含了6亿3000万个连接,6000万个参数和65万个神经元,拥有5个卷积层,其中3个卷积
VGG是一种经典的卷积神经网络。只堆叠卷积、ReLU、池化操作就在图像识别领域获得巨大成就。但随后的研究关注点转移到是否具有良好的网络结构设计,例如Inception、ResNet、DenseNet。这使得模型越来越复杂。这些复杂的卷积网络有明显的缺点。一是复杂的多分支设计让模型难以实现和自定义,拖慢推理速度和降低了内存利用率。二是一些随机混合操作增加了内存访问消耗,而且缺乏硬件设备支持。综合这些
转载
2024-07-05 04:35:09
85阅读
VGG全文翻译移步:2014年提出VGG-Net网络。研究了卷积网络深度对大尺度图像识别精度的影响,更深的网络能提高性能。之前的改进:更小的接受窗口、较小的步幅。ImageNet Challenge 2014定位和分类过程中分别获得了第一名和第二名。1、特性/贡献1、相比AlexNet及13年方法,使用了更小的感受窗口尺寸和更小的第一卷积层步长,将深度推到16-19加权层可以实现对现有技
FPN是针对物体检测中多尺度难题提出的一种解决方法,结合高层的语义信息和低层高分辨率的特征信息,在融合后的不同特征层检测尺度不一样的物体,提高了物体检测的准确率,尤其是小物体的检测。Approach三步走:(FPN结合ResNet为例)bottom-up: Resnet的5个stage: C1, C2, C3, C4, C5,每个stage的scale是两倍关系。upsample: 自
转载
2024-08-05 17:56:45
94阅读
在图像分类和目标检测任务中都表现出非常好的结果。VGG最大的贡献就是证明了卷积神经网络的深度增加和小卷积核的使用对网络的最终分类识别效果有很大的作用。论文中,作者指出,虽然LRN(Local Response Normalisation)在AlexNet对最终结果起到了作用,但在VGG网络中没有效果,并且该操作会增加内存和计算,从而作者在更深的网络结构中,没有使用该操作。VGG网络参数Q1: 为什
1.搭建环境环境在实验进行时已经搭建完毕,具体步骤就不过多赘述接下来只需导入所需的包即可import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image
from tensorflow.keras import layers,activations
from tensor
太早的LeNet和AlexNet就不提了,也相对比较简单。vgg16 vgg19文章《VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE SCALE IMAGE RECOGNITION》发现了小卷积核搭配更深的网络会有更好的效果。小卷积核堆叠在保持感受野不变的情况下参数更少,网络更深学习能力更强。结构:前面一堆卷积层后面跟三层全连接层。卷积核全为3x3且全有pad
转载
2024-04-03 07:13:41
250阅读
背景相较于AlxNet,使用更小卷积核(层数加深,参数减少)。来源:VGG模型是2014年ILSVRC竞赛的第二名,第一名是GoogLeNet。但是VGG模型在多个迁移学习任务中的表现要优于googLeNet。而且,从图像中提取CNN特征,VGG模型是首选算法。它的缺点在于,参数量有140M之多,需要更大的存储空间。先来看看VGG这篇论文《Very Deep Convolutional Netwo
转载
2024-05-03 15:04:57
205阅读