1、题目:一维小波变换 2、原理:Mallat算法,用Daubechies正交小波基作为卷积核对输入信号作卷积,对结果进行重排可得一维小波变换后的尺度系数和小波系数。可参见《实用小波分析入门》(刘涛、曾祥利、曾军主编,国防工业出版社,2006年4月第一看看版)第105~106页。 3、代码:
[cpp]
view plain
## 二维小波变换(一维和n维类似):
# 单层变换 pywt.dwt2
pywt.dwt2(data, wavelet, mode=’symmetric’, axes=(-2, -1))
data: 输入的数据
wavelet:小波基
mode: 默认是对称的
return: (cA, (cH, cV, cD))要注意返回的值,分别为低频分量,水平高频、垂直高频、对角线高频。高频
转载
2023-06-16 15:32:57
216阅读
# 一维小波变换与Python实现
## 什么是一维小波变换?
小波变换是一种强大的信号处理技术,可以分析时频域信息。它主要用于信号的压缩和去噪,其基本思想是将信号分解成不同的频率成分,以便进行详细分析。
与传统的傅里叶变换不同,小波变换能够对信号的多分辨率特性进行分析,并在时间和频率上具有更好的局部化,因此在图像处理、语音识别、金融数据分析等领域得到广泛应用。
## 一维小波变换的原理
最近在学连续小波变换CWT,记录一下。一、连续小波变换原理
可乐:连续小波变换详解(1)zhuanlan.zhihu.com
连续小波傅里叶变换表达式: 一个小波基函数: 尺度参数:a (>1缩小,提高频率 窗子变小;<1拉伸,) 平移参数:b(时域平移) 前一项为复三角函数域变换,后一项为衰减函数,
小波变换傅里叶变换—>短时傅里叶变换—>小波变换傅里叶变换可以分析信号的频谱,但对于非平稳过程具有局限性(频率随时间变化的非平稳信号)。短时傅里叶变换把整个时域过程分解成无数个等长的小过程,每个小过程近似平稳,再傅里叶变换,就知道在哪个时间点上出现了什么频率。但是STFT的窗太长太短都有问题,窗太窄,窗内的信号太短,会导致频率分析不够准确,频率分辨率差;窗太宽,时域不够精细,时间分辨率
转载
2023-05-29 14:07:07
0阅读
# Python一维Harr小波变换实现
## 简介
在本文中,我将向你介绍如何使用Python实现一维Harr小波变换。Harr小波变换是一种常用的信号处理方法,可用于信号压缩、噪声去除和特征提取等应用。
## 步骤概述
下面是一维Harr小波变换的实现步骤概述:
| 步骤 | 描述 |
| :--- | :--- |
| 1 | 将输入信号分解为近似系数和细节系数 |
| 2 | 对近似
原创
2023-08-01 03:21:54
327阅读
目录参考文章理论单层变换:dwt2单层逆变换:idwt2多尺度变换阈值函数 pywt.threshold注意问题 参考文章 https://www.jb51.net/article/154309.htm理论不同的小波基函数,是由同一个基本小波函数经缩放和平移生成的小波变换就是将原始图像和小波基函数以及尺度函数进行内积运算单层变换:dwt2pywt.dwt2(data, wavelet, mod
转载
2023-08-26 22:02:20
188阅读
appcoef2函数
% 当前延拓模式是补零
% 装载原始图像
load sinsin;
% 绘制原始图像
subplot(2,2,1);
image(X);
colormap(map);
title('原始图像');
% X 包含装载的图像
% 使用db1对X进行尺度为2的分解
[c,s] = wavedec2(X,2,'db1');
sizex = size(X)
sizec = size(
转载
2023-12-11 13:52:37
46阅读
一维连续小波变换
转载
2023-02-02 08:47:07
869阅读
一,小波去噪原理:信号产生的小波系数含有信号的重要信息,将信号经小波分解后小波系数较大,噪声的小波系数较小,并且噪声的小波系数要小于信号的小波系数,通过选取一个合适的阀值,大于阀值的小波系数被认为是有信号产生的,应予以保留,小于阀值的则认为是噪声产生的,置为零从而达到去噪的目的。小波阀值去噪的基本问题包括三个方面:小波基的选择,阀值的选择,阀值函数的选择。(1) 小波基的选择:通常我们希望所选取的
转载
2023-08-24 17:19:17
223阅读
相关资料笔记术语(中英对照):尺度函数 : scaling function (在一些文档中又称为父函数 father wavelet )小波函数 : wavelet function(在一些文档中又称为母函数 mother wavelet)连续的小波变换 :CWT离散的小波变换 :DWT小波变换的基本知识不同的小波基函数,是由同一个基本小波函数经缩放和平移生成的。小波变换是将原始图像与小波基函数
转载
2023-06-21 15:49:33
542阅读
我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小 波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不 是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换
转载
2023-08-28 16:26:26
160阅读
# Python 二维小波变换简介
小波变换是一种用于信号处理的重要技术,它能够分析信号在不同尺度上的特征。二维小波变换常用于图像处理领域,如去噪、图像压缩和特征提取等。本文将介绍如何使用Python进行二维小波变换,并提供简单的代码示例。
## 小波变换概述
小波变换通过一组称为“小波”的基函数对信号进行多分辨率分析。与傅里叶变换不同,小波变换可以同时提供信号的时域和频域信息。这使得小波变
原创
2024-08-13 09:34:53
146阅读
在处理图像处理和信号分析时,二维小波变换(2D Wavelet Transform)是一个非常强大的工具。它允许我们在不同的尺度上分析信号,从而实现多分辨率分析。本文将详细探讨如何在Python中实现二维小波变换的过程,包括环境准备、集成步骤、配置详解、实战应用、排错指南和性能优化。
## 环境准备
在开始之前,确保您具备以下软件环境。我们将使用Python及其相关库来实现二维小波变换。
首
在Matlab中,二维多级小波变换共4种函数,分别为:1.多级分解函数:wavedec22.系数提取函数:appcoef2和detcoef23.系数重构函数:wrcoef24.信号重构函数:waverec21.多级分解函数-wavedec2将时域上的原始信号(图像)分解为小波域(实际不存在,类比于于傅里叶变换中的频域)上的低频近似成分和高频细节成分。代码示例: X 结果示意图:
转载
2024-01-09 21:57:42
456阅读
最近在看物体识别论文摘要,好多论文中涉及到使用离散余弦傅里叶变换DFT(Discrete Fourier Transform)对图像进行处理,因此特地看了这部分的内容,傅里叶变换和小波变换。一、DFT的原理:以二维图像为例,归一化的二维离散傅里叶变换可以写成如下形式:其中f(x,y)表示图像的空间域的值,而F表示频域的值,傅里叶转换的结果为复数,这也表明,傅里叶变换其实是一副实数图像和虚数图像叠加
转载
2023-11-26 23:49:32
469阅读
小波变换只对信号低频频带进行分解。小波包变换继承了小波变换的时频分析特性,对小波变换中未分解的高频频带信号进一步分解,在不同的层次上对各种频率做不同的分辨率选择,在各个尺度上,在全频带范围内提供了一系列子频带的时域波形。小波包分析就是进一步对小波子空间按照二进制方式进行频带细分,以达到提高频率分辨率的目的。小波变换和小波包变换的关系如下图所示。2、构造原理(1)、第二代小波包变换也是有分解和重构两
转载
2023-08-30 18:50:13
329阅读
在此稍微说一下小波阈值去噪。手写程序,不调用函数。目的是用来解决各个学校的大作业问题。不用来解决任何实际问题。 首先要了解一下小波变换从老根上讲就是做卷积。一个信号,或者一个图片,与小波的高通部分做卷积,得出的系数是高频系数,与小波的低通部分做卷积得出低频系数。以一张图片小波阈值去噪为例,讲一下整个编程过程。第一是准备阶段:一张图片是三种数据:高度、宽度和色彩度。编程以经典的二维小波变换为例,所以
转载
2023-06-29 11:29:43
165阅读
小波级数:CWT的离散化 连续小波函数为:将s = s_0^j,tau = k*s_0^j*tau_0代入上式,则小波函数变为: 如果{psi_(j,k)}为一组正交基,则小波级数变换变为
转载
2023-11-17 11:02:27
166阅读
小波变换有信号显微镜之称,在EEG分析中也有广泛的应用,印象中小波算法是来源于地球物理解释的。之前有介绍过小波的一些资料和实现:可以参考下,这里主要分析小波和FIR滤波效果的对比。博客对应的代码和数据# 短时傅里叶变换和FIR滤波效果对比
import mne
import matplotlib.pyplot as plt
from scipy import signal, fft
import
转载
2023-10-13 22:32:58
244阅读