一、相关原理概念 相关性(Correlation):在统计学中,相关性或独立性是两个随机变量之间的统计关系。尽管在最广泛的意义上,相关性可以表示任何类型的关联,但统计学中,它通常指的是一对变量线性相关的程度。我们熟知的Pearson相关系数(ρ = cov(X,Y)/ sqrt(DX * DY)),它只对两个变量之间的线性关系敏感(
转载
2023-12-23 18:49:27
158阅读
统计学之三大相关性系数(pearson、spearman、kendall) (2016-11-10 17:42:14)三个相关性系数(pearson, spearman, kendall)反应的都是两个变量之间变化趋势的方向以及程度,其值范围为-1到+1,0表示两个变量不相关,正值表示正相关,负值表示负相关,值越大表示相关性越强。 1. person correlation c
转载
2023-08-10 13:15:56
241阅读
0. 前言最近,在做成品油油库大数据产品研发过程中,我使用Person相关算法做分析[1],例如对发油系统中各项数据做相关分析,给出了“皮尔逊相关热力图”。设计讨论会上,领导说:相关分析有什么用?能给出什么样的结论?在相关分析中,两两数据项关系意义不大,能否看到整体相关关系?近些年来,“大数据”这个词早已为大众所熟悉,“大数据”也一直是以高冷的形象出现在大众面前,面对大数据,相信许多人都一头雾水。
转载
2024-06-17 19:50:15
48阅读
# Python自相关性与偏相关性
在数据分析和统计领域,自相关性与偏相关性是两种重要的概念。这两者帮助我们理解变量之间的关系,特别是在时间序列分析和多变量数据分析中。本文将详细介绍自相关性与偏相关性,并通过 Python 的代码示例帮助您更好的理解这两个概念。
## 1. 自相关性
自相关性(Autocorrelation)是指一个时间序列与其自身在不同时间点上的相关性。简单来说,自相关性
好久没发博客了,今天来发一篇分析股价相关度的。╮(╯▽╰)╭为什么要分析股价相关度呢,我们来引入一个概念——配对交易 所谓的配对交易,是基于统计套利的配对交易策略是一种市场中性策略,具体的说,是指从市场上找出历史股价走势相近的股票进行配对,当配对的股票价格差偏离历史均值时,则做空股价较高的股票同时买进股价较低的股票,等待他们回归到长期均衡关系,由此赚取两股票价格收敛的报酬。 接
转载
2023-09-08 15:16:18
6阅读
在进行数据分析时,我们所用到的数据往往都不是一维的,而这些数据在分析时难度就增加了不少,因为我们需要考虑维度之间的关系。而这些维度关系的分析就需要用一些方法来进行衡量,相关性分析就是其中一种。本文就用python来解释一下数据的相关性分析。在进行相关性分析之前需要介绍几个概念,一是维度,二是协方差,三是相关系数。首先来看维度,以图1为例,这是一个员工信息统计表,这里有n个员工,分别是员工1、员工2
转载
2023-09-19 05:14:03
75阅读
python 利用Scipy计算person 和spearman相关系数觉得有用的话,欢迎一起讨论相互学习~学习以下两位大佬的讲解(Pearson)皮尔逊相关系数和spearman相关系数(附python实现)相关性系数及其python实现皮尔逊相关系数下面是皮尔逊相关系数的计算公式,只需要将(X和Y的协方差)/(X的标准差*Y的标准差)spearman相关系数简单的相关系数的分类那么对于这两个系
转载
2023-06-21 15:59:24
658阅读
相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。相关性的元素之间需要存在一定的联系或者概率才可以进行相关性分析,反应的线性相关程度的量,比如:流量和收入,收入和顾客、订单等的关系,就具有相关性。相关性分为:正向相关、负相关、不相关(不存在线性关系、可能存在其他关系)、强相关、弱相关为什么要对相关系数进
转载
2024-01-02 11:05:27
109阅读
相关函数1.1 定义 为信号的x(n)和y(n)的互相关函数。该式表示,rxy(m)在时刻m时的值,等于将x(n)保持不动而y(n)左移m个抽样周期后两个序列对应相乘相加的结果。1.2 相关函数的应用1.2.1 周期性检测噪声信号是随机过程,任取噪声信号两个不同点的相关性为零,因此利用该原理可以检测带噪声信号的周期性。例1:带有高斯白噪声的正弦周期信号,T=8*采样周期(图1.1),对该
转载
2024-01-08 19:53:47
47阅读
目录相关系数矩阵热力图电影信息的各个属性(字段)之间存在相关性,选取budget,popularity,release_date,revenue,runtime,status,vote_average,vote_count字段作为分析对象 相关系数矩阵每个子图都是每个维度和其他某个维度的相关关系图,这其中主对角线上的图,则是每个维度的数据分布直方图。其中可以看出各因素间相关性强弱的大小。
转载
2023-08-20 22:49:14
168阅读
本篇博客主要以员工贡献度为例,分析不同菜品之间是否存在相关性。最典型的应用就是:啤酒和尿布销售之间的联系 文章目录一、周期性分析二、贡献性分析三、相关性分析1、探究不同菜品之间的相关性2、探究不同学生之间的相关性 一、周期性分析探索某个变量是否随着时间变化而呈现出某种周期性变化的趋势。时间尺度相对较长的周期性趋势有:年度周期性趋势,季节性周期性趋势,相对较短的有月度周期性趋势,周度周期性趋势,甚至
转载
2023-07-20 18:17:20
128阅读
相关性是量化不同因素间变动状况一致程度的重要指标。在样本数据降维(通过消元减少降低模型复杂度,提高模型泛化能力)、缺失值估计、异常值修正方面发挥着极其重要的作用,是机器学习样本数据预处理的核心工具。样本因素之间相关程度的量化使用相关系数corr,这是一个取之在[-1,1]之间的数值型,corr的绝对值越大,不同因素之间的相关程度越高——负值表示负相关(因素的值呈反方向变化),正值表示正相关(因素的
转载
2023-11-19 17:16:33
181阅读
(参考:向量的相似性度量)一、问题 求下面两个向量的相似性:a = (x11, x12, x13, ..., x1n)b = (x21, x22, x23, ..., x2n)二、方法1. 欧氏距离(Eculidean Distance)
转载
2023-08-20 10:19:27
240阅读
平均数和变异性量数是用于描述数据分布特征的关键,但变量之间的关系如何描述?或者说当一个变量发生变化的时候,另一个变量如何变化?这就涉及到相关系数的计算。相关系数(correlation coefficient):是反映两个事物(变量)之间线性关系的数值性指标。相关关系的类型和相应的变量之间的关系 变量X变量Y相关关系的类型数值例子X值增大Y值增大直接的或正向的(0,1)存的钱越多,利息就越多X值降
转载
2023-11-14 09:47:30
72阅读
目录1.简介2.Pearson相关系数算法详解程序实现3.Kendall相关系数算法详解 程序实现4.Spearman相关系数算法详解 程序实现1.简介相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。相关性的元素之间需要存在一定的联系或者概率才可以进行相关性分析。常见的三种:Pearson相关系数,Kendall相关系数和Spearm
转载
2023-09-01 20:52:10
169阅读
数据分析是很多建模挖掘类任务的基础,也是非常重要的一项工作,在我之前的系列博文里面已经详细介绍过很多数据分析相关的内容和实践工作了,与之对应的最为常见的分析手段就是热力图可视化分析了,这里我简单给出来自己之前的几篇相关的文章,感兴趣的话可以前去查阅。  
转载
2023-11-02 08:55:32
98阅读
近期,有小伙伴问我关于怎么使用python进行散点图的绘制,这个东西很简单,但是怎么讲相关性的值标注在图形上略显麻烦,因此,在这里记录一下,将整个流程展示一下。 需要用到的库在本篇博客中,主要用到的库是pandas、numpy、matplotlib、seaborn等,想要使用seaborn库必须要引入matplotlib库,seaborn是作为它的挂库。#1 load pakeage
转载
2023-06-16 06:01:51
540阅读
关于相似度计算方法的python实现参考各种相似度计算的python实现[KNN]基于numpy的曼哈顿距离实现余弦距离介绍欧氏距离,曼哈顿距离:计算两个向量间的相似程度,值越小,相似度越高高斯距离(标准化欧氏距离):计算两个向量间的相似程度,值越大,相似度越高余弦相似度:取值范围是[-1,1],相同两个向量的之间的相似度为cos(0°)=1,方向上正相关;cos(180°) = -1,方向上负相
转载
2023-10-20 21:12:04
102阅读
在进行数据相关分析的时候,往往面对的是复杂所庞大的数据集,这个时候,Python所完成的脚本能够帮助你方便且快捷地整理很多数据!1.你所需要的第三方库在本次实验中,你所需要的第三方库包括pandas以及scipy,如果你喜欢一并把图做出来,也可以加上numpy和matplotlib2.加载数据首先将文件路径导出来,用下方类似的语句就可以将其导入 rd = r'D:\DataRelated
转载
2023-05-28 17:40:05
329阅读
4种更快更简单实现Python数据可视化的方法力图、二维密度图、蜘蛛网图和树状图,这些可视化方法你都用过吗? 数据可视化是数据科学或机器学习项目中十分重要的一环。通常,你需要在项目初期进行探索性的数据分析(EDA),从而对数据有一定的了解,而且创建可视化确实可以使分析的任务更清晰、更容易理解,特别是对于大规模的高维数据集。在项目接近尾声时,以一种清晰、简洁而引人注目的方式展示最终结果也是非常重要的
转载
2024-07-24 21:34:35
39阅读