文章目录1 定义2. 字典特征提取API3. 字典特征提取案例:1.实现效果:2.实现代
字典特征抽取作用:对字典数据进行特征值化类:sklearn.feature_extraction.DictVectorizerDictVectorizer 语
原创 2022-06-01 18:35:57
650阅读
英文文本特征提取 方法步
原创 2022-09-13 12:45:58
289阅读
文本提取文本向量化词频和所谓的Tf-idf是传统自然语言处理中常用的两个文本特征。以词频特征和Tf-idf特征为基础,可以将一段文本表示成一个向量。将多个文本向量化后,然后就可以运用向量距离计算方法来比较它们的相似性、用聚类算法来分析它们的自然分组。如果文本有标签,比如新闻类、军事类、财经类等等,那么还可以用它们来训练一个分类模型,用于对未知文本进行标签预测。词频将文本中每个词出现的次数按一定的
#中文分词 def cut_word(text): text=" ".join(list(jieba.cut(text))) return text #中文文本特征提取 def count_chinese_dome(): data=["10艘中俄军舰穿过津轻海峡,这一举措合乎国际法,无可指摘,却引起日本国内“异样反应”。" "19日,日本内阁官房
转载 2023-06-19 10:21:08
154阅读
这一部分我们主要介绍和特征处理相关的算法,大体分为以下三类:特征抽取:从原始数据中抽取特征特征转换:特征的维度、特征的转化、特征的修改特征选取:从大规模特征集中选取一个子集特征提取TF-IDF (HashingTF and IDF)“词频-逆向文件频率”(TF-IDF)是一种在文本挖掘中广泛使用的特征向量化方法,它可以体现一个文档中词语在语料库中的重要程度。 词语由t表示,文档由d表示,语料库由D
文章目录一、字典特征抽取二、文本特征数值的统计英文文本中文文本Tf-idf 一、字典特征抽取使用到的APIDictVectorizer(sparse=True)from sklearn.feature_extraction import DictVectorizersparse默认是True,返回一个稀疏矩阵。 该api作用是对数据生成一个one-hot编码. 下面用一个例子来看下api具体的用
http://cloga.info/2014/01/19/sklearn_text_feature_extraction/文本特征提取词袋(Bag of Words)表征文本分析是机器学习算法的主要应用领域。但是,文本分析的原始数据无法直接丢给算法,这些原始数据是一组符号,因为大多数算法期望的输入是...
转载 2015-01-06 18:07:00
257阅读
2评论
一、专有名词1‘  容器    创建一种对象类型,持有对其他对象的引用,被称为容器的新对象。在任何时候都可以扩充自己以容纳置于其中的所有东西。    java在其标准类库中包含了大量的容器。在某些类库中,一两个通用容器足以满足所有的需要;但是在其他类库中,具有不同的需要的各种类型的容器,如List,Map,Set,以及队列,树,堆栈等更多构件。2‘  异常处理:处理错误     异常处理将错误处理
# 机器学习中的文本特征提取 在现代机器学习领域,文本特征提取是数据预处理的重要步骤。它通过将原始文本数据转换为可由机器学习模型处理的数值特征,为模型的训练打下基础。本文将介绍文本特征提取的常见方法,并提供一些代码示例以帮助理解。 ## 什么是文本特征提取文本特征提取是将文本数据转换为向量表示的过程。我们通常会使用各种技术来提取出有意义的特征,使机器学习算法能够理解和处理这些数据。一些常
 本特征提取: 将文本数据转化成特征向量的过程 比较常用的文本特征表示法为词袋法 词袋法: 不考虑词语出现的顺序,每个出现过的词汇单独作为一列特征 这些不重复的特征词汇集合为词表 每一个文本都可以在很长的词表上统计出一个很多列的特征向量 如果每个文本都出现的词汇,一般被标记为 停用词 不计入特征向量 主要有两个api来实现 CountVe
TF-IDF原理 1.1 文本向量化特征的不足   在将文本分词并向量化后,我们可以得到词汇表中每个词在各个文本中形成的词向量,比如在文本挖掘预处理之向量化与Hash Trick这篇文章中,我们将下面4个短文本做了词频统计:corpus=["I come to China to travel", "This is a car polupar in China",
转载 2024-06-08 13:42:08
72阅读
  特征选择(亦即降维)是数据预处理中非常重要的一个步骤。对于分类来说,特征选择可以从众多的特征中选择对分类最重要的那些特征,去除原数据中的噪音。主成分分析(PCA)与线性判别式分析(LDA)是两种最常用的特征选择算法。关于PCA的介绍,可以见我的另一篇博文。这里主要介绍线性判别式分析(LDA),主要基于Fisher Discriminant Analysis with Kernals[
转载 2024-01-13 22:43:19
363阅读
概述上一篇文章我们一起学习了GCN网络,它的作用是提取特征点和描述子,用于匹配得到位姿。本次我们一起学习它的改进版GCNv2,改进版在速度上大幅度提升,精度上和原网络性能相当。并且改进版所提取特征点具有和ORB一样的格式,因此作者把它在ORB-SLAM中替换掉了ORB特征,也就是GCN-SLAM。论文链接:https://arxiv.org/abs/1902.11046v1代码链接
 中文文本特征值处理:如何从一段话中,分解句子,以矩阵的形式,得到每个词语出现的次数,可以应用于文章类别分析、情感预测等等。 1.中文文本特征抽取:第一种方法:1.利用jieba.cut进行分词; 2.实例化CountVectorizer; 3.将分词结果变成字符串当做fit_transform的输入值;         第二种方法:过滤掉文章中不重要的信息,比如对比两篇文章时
转载 2023-07-06 16:51:01
461阅读
问答系统1. SQuAD数据集给定一段文字作为context,给定一个问题question,从context中寻找一段连续的文字(text span)作为问题的答案。网址:https://rajpurkar.github.io/SQuAD-explorer/ 代码:https://github.com/galsang/BiDAF-pytorch2. 数据格式3. 整体流程架构文本摘要所谓摘要,就是
机器学习算法往往无法直接处理文本数据,需要把文本数据转换为数值型数据,One-Hot表示把文本转换为数值的一种方法。 一,One-Hot表示 One-Hot表示是把语料库中的所有文本进行分词,把所有单词(词汇)收集起来,并对单词进行编号,构建一个词汇表(vocabulary),词汇表是一个字典结构,
转载 2019-03-26 09:10:00
262阅读
2评论
中文文本特征提取是自然语言处理(NLP)领域中的重要任务之一。它的目标是从给定的中文文本提取出有用的特征,以便于后续的文本分析和机器学习任务。本文将介绍中文文本特征提取的基本概念和常用的方法,并使用Python语言提供代码示例。 ## 什么是文本特征提取文本特征提取是将文本转换为计算机可以理解和处理的数字形式的过程。在NLP任务中,文本特征提取是非常重要的,因为大多数机器学习算法和模型只
原创 2023-08-24 06:43:33
787阅读
类别可分离性判据特征提取与选择的共同任务是找到一组对分类最有效的特征,有时需要一定的定量准则(或称判据)来衡量特征对分类系统(分类器)分类的有效性。换言之,在从高维的测量空间到低维的特征空间的映射变换中,存在多种可能性,到底哪一种映射变换对分类最有效,需要一个比较标准。此外,选出低维特征后,其组合的可能性也不是唯一的,故还需要一个比较准则来评定哪一种组合最有利于分类。 1.可分离性判据满足的条件 从理论上讲,可以用分类系统的错误概率作为判据,选取分类系统错误(概)率最小的一组特征作为最佳特征。但在实践中;由于类条件分布密度经常是未知的,且即使已知其分布但难于用计算机实现。因此,要研究实用的判据
转载 2012-03-11 22:30:00
705阅读
2评论
文本特征提取词袋(Bag of Words)表征文本分析是机器学习算法的主要应用领域。可是,文本分析的原始数据无法直接丢给算法。这些原始数据是一组符号,由于大多数算法期望的输入是固定长度的数值特征向量而不是不同长度的文本文件。为了解决问题,scikit-learn提供了一些有用工具能够用最常见的方式从文本内容中抽取数值特征,比方说: 标记(tokenizing)文本以及为每个可能的标记(toke
转载 2015-07-01 11:46:00
203阅读
2评论
  • 1
  • 2
  • 3
  • 4
  • 5