平滑图像:滤波器平滑 也称 模糊, 是一项简单且使用频率很高的图像处理方法。平滑处理的用途有很多, 但是在本教程中我们仅仅关注它减少噪声的功用 (其他用途在以后的教程中会接触到)。平滑处理时需要用到一个 滤波器 。最常用的滤波器是 线性不妨把 滤波器 想象成一个包含加权系数的窗口,当使用这个滤波器平滑处理图像时,就把这个窗口滑过
转载
2024-04-03 21:10:25
121阅读
USM锐化(Unsharp Mask Sharpening)是Adobe Photoshop中使用的一种锐化方法,它的原理和拉普拉斯锐化相似,都
USM锐化是用来锐化图像边缘的,它通过调整图像边缘细节的对比度,并在边缘的两侧生成一条亮线一条暗线,使画面整体更加清晰。 USM锐化用公式描述很麻烦,这里干脆实现步骤列于下面: 1、备份图像原数据; 2、按给定半径对图像进行高斯模糊; &nbs
1. 获取图像像素指针CV_Assert(myImage.depth() == CV_8U);Mat.ptr(int i=0) 获取像素矩阵的指针,索引i表示第几行,从0开始计行数。获得当前行指针const uchar* current= myImage.ptr(row );获取当前像素点P(row, col)的像素值 p(row, col) =current[col]2. 像素范围处理satur
转载
2024-04-08 17:47:47
84阅读
本节为opencv数字图像处理(8):频率域滤波的第五小节,使用频率域滤波器进行图像的平滑与锐化,主要包括:理想低通/高通滤波器,巴特沃斯低通/高通滤波器、高斯低通/高通滤波器、频率域拉普拉斯算子、高频强调滤波器以及同态滤波的介绍和C++实现。1. 使用低通滤波器进行图像平滑 考虑图像中的边缘与其他尖锐的灰度转变对其傅里叶变换的高频内容有贡献,因此在频率域平滑图像可通过高频分量的衰减来达到,即低
转载
2024-08-20 16:58:22
367阅读
PS 图像滤镜— — USM 锐化
转载
2016-04-24 15:14:00
478阅读
2评论
# -*- coding:utf-8 —*-
import numpy as np
import cv2
# 目标:
# 获取像素值并修改
# 获取图像的信息
# 图像的RIO()
# 图象通道的拆分及合并
# step1: 获取图像的信息
# 读取图片 读入彩色图和灰度图
# color_img = cv2.imread("TestOpencv.jpg"
PS菜单:
滤镜/锐化/USM锐化
USM锐化滤镜工作原理
两种颜色相交时,不改变颜色本身,而只是将其交线变得清楚一些,可使图像看起来更清晰,这正是人眼的一种观察特征。
采用照相制版中的虚光蒙版(模糊遮罩)原理,通过加大图像中相邻像素间的颜色反差,使图像的不同颜色之间生成明显的分界线,从而提高图像整体的清晰效果。
转载
2023-12-26 21:12:27
120阅读
图像梯度、图像边缘图像梯度、图像边缘图像梯度、图像边缘
原创
2021-08-02 14:17:23
6126阅读
# Python中的USM锐化技术详解
USM锐化(Unsharp Masking)是一种广泛应用于图像处理的技术,旨在增强图像的边缘和细节。在数字图像处理中,通过对图像进行锐化处理,使得图像看起来更加清晰、细节更加突出。本文将介绍USM锐化的原理,使用Python实现该技术,并提供完整的代码示例。
## USM锐化原理
USM锐化的基本原理是通过对图像的模糊版本与原图之间的差异进行增强,从
网络上的数据集和验证集每一类都有超过1000的数据量,但是由于手工截图的效率较低,以及房屋矢量影像不够精确,本次学习和验证的最终数据量太小,容易造成训练时的过拟合。过拟合是指为了得到一致假设而使假设变得过度严格,也就是说当前学习后的模型,只适用于当前的数据,换一套建筑物遥感影像就无法识别。因此为了解决过拟合,从数据的角度需要对当前数据进行增强。常用的数据增强方法有:对颜色的数据增强、尺度变换、水平
转载
2024-09-29 14:10:46
38阅读
目录1.对一个图像的简单操作1.1 读取图像并转换为灰度图1.2 二值化处理 :大于阈值使用maxval(255)表示,小于阈值使用0表示1.3 腐蚀处理: 将图像中的高亮区域或白色部分进行缩减细化1.4 图像膨胀:将图像中的高亮区域或白色部分进行扩张1.5图像开运算:先腐蚀后膨胀 有利于去除噪声(去除黑色区域中的白点)2. 阈值化方法的比较 1.对一个图像的简单操作import cv2
imp
转载
2023-10-16 17:52:26
184阅读
前言图像锐化 (image sharpening) 是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。图像锐化是为了突出图像上地物的边缘、轮廓,或某些线性目标要素的特征。这种滤波方法提高了地物边缘与周围像元之间的反差,因此也被称为边缘增强。实现效果原图USM锐化Laplace锐化 上面三图从左到右分别是原图、USM锐化、Laplace锐化后的
转载
2024-05-27 16:07:44
249阅读
锐化概念图像平滑过程是去除噪声的过程。图像的主要能量在低频部分,而噪声主要集中在高频部分。图像的边缘信息主要也在高频部分,在平滑处理后,将会丢不部分边缘信息。因此需要使用锐化技术来增强边缘。平滑处理的本质是图像经过平均或积分运算,锐化进行逆运算(如微分)即可。微分运算是求信号变化频率,可以增强高频分量的作用。在对图像进行锐化处理前要确定图像有较高的信噪比,否则处理后的图像增加的噪声比信号多。常用的
转载
2024-01-09 18:55:08
101阅读
1、图像锐化理论基础1、锐化的概念 图像锐化的目的是使模糊的图像变得清晰起来,主要用于增强图像的灰度跳变部分,这一点与图像平滑对灰度跳变的抑制正好相反。而且从算子可以看出来,平滑是基于对图像领域的加权求和或者说积分运算的,而锐化则是通过其逆运算导数(梯度)或者说有限差分来实现的。2、图像的一阶微分和二阶微分的性质图像的锐化也就是增强图像的突变部分,那么我们也就对图像的恒定区域中,突
转载
2024-01-09 19:13:50
117阅读
前言开局一张图,内容全靠编。简介图像锐化(image sharpening)是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰。函数声明void sharpen(const cv::Mat &image, cv::Mat &result);函数定义void sharpen(const cv::Mat &image, cv::Mat &result) {
转载
2023-07-26 22:04:05
403阅读
图像锐化图像锐化(image sharpening)是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。图像锐化是为了突出图像上地物的边缘、轮廓,或某些线性目标要素的特征。这种滤波方法提高了地物边缘与周围像元之间的反差,因此也被称为边缘增强。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是因为图像受到
转载
2023-10-17 14:07:19
709阅读
一、opencv是什么OpenCV其实就是一堆C和C++语言的源代码文件,这些源代码文件中实现了许多常用的计算机视觉算法。OpenCV的全称是Open Source Computer Vision Library,是一个开放源代码的计算机视觉库OpenCV最初由英特尔公司发起并开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用,现在美国Willow Garage为OpenCV提供主要的支
转载
2023-09-22 16:29:09
81阅读
本文用 Python 实现 PS 滤镜中的 USM 锐化效果,具体的算法原理和效果可以参考之前的博客:
javascript:void(0)
import matplotlib.pyplot as plt
from skimage import io
from skimage.filters import gaussian
file_name='D:/Visual Effects/PS
转载
2017-10-25 19:34:00
496阅读
2评论
# 图像锐化的实现流程
## 介绍
在本文中,我将向你介绍如何使用Python和OpenCV库实现图像锐化。图像锐化是一种提高图像边缘和细节的方法,使图像更加清晰和鲜明。我们将通过一系列步骤来实现图像锐化。
## 步骤
以下是实现图像锐化的步骤:
| 步骤 | 描述 |
| --- | --- |
| 1 | 读取图像 |
| 2 | 灰度化图像 |
| 3 | 使用拉普拉斯算子进行滤波
原创
2023-07-28 03:48:40
429阅读