哈夫曼树前言一、哈夫曼树是什么?二、实现哈夫曼树1.搭建树结构2.可视化结构3.哈夫曼编码三.完整代码总结 前言   最近面试时被Q的知识盲点,只记得名词不知道其意,工作三年,考研时学的东西基本上又还给了老师,除去链表工作中可能用的比较多,树相关可能基本只记得名词。 网上很多讲解都看过了,不过算法这块儿有事还得去找“小灰哥”。Let’s go!!!一、哈夫曼树是什么?简单点说就是求解基础原
1. 什么是?有什么作用? 是用来描述实体间关系的一种结构。实体是人、事、物。比如:地铁线路;人物关系;社交关系网;通讯网络;评分网络。 作用:根据相关规则和算法,可以计算出节点的重要程度。进行社团检测。 的属性:一般、加权;有向、完全;连通、非连通。 节点度数:出度、入度。
原创 2021-06-28 09:13:44
825阅读
  通过ArcGIS可以制作水环境专题图,以可视化的方式表达,揭示不同区域的水环境状况,反映水体环境质量在空间上的变化趋势,对水环境的科学管理具有非常重要的意义,下面就来介绍河流水质动态分段精细化制图的方法和流程。   河流水质的动态分段主要应用桌面的线性参考工具,处理的是线状河流数据,核心是通过自动的GP工具动态计算通过线状河流构建的路径事件表中存储事件的地图位置的属性值,通过“创建路径事件
可视化图表种类如此之多,什么场景下应该用什么图表展示,是一个让人头秃的难题。小编在网站上收录了 几十种可视化图表样式以及它们分别适用于什么样的场景,并且推荐了相应的制作工具,非常值得一看。点阵图图片点阵图表 (Dot Matrix Chart) 以点为单位显示离散数据,每种颜色的点表示一个特定类别,并以矩阵形式组合在一起。适合用来快速检视数据集中不同类别的分布和比例,并与其他数据集的分布和比例进行
转载 2024-03-28 21:03:35
81阅读
数据可视化对于通过将数据转换为视觉效果来揭示数据中隐藏的趋势和模式非常重要。为了可视化任何形式的数据,我们都可能在某个时间点使用过数据透视表和图表,如条形、直方图、饼、散点图、折线图、基于地图的图表等。这些很容易理解并帮助我们传达准确的信息。基于详细的数据分析,我们可以决定如何最好地利用手头的数据,帮助我们做出明智的决定。如果你是数据科学或机器学习初学者,你肯定已经尝试过 Matplotlib
1. 可视化单张图片from torch.utils.tensorboard import SummaryWriter import torch if __name__ == '__main__': summary_writer = SummaryWriter(log_dir='log_image', comment='test tensorboard image', filename
转载 2024-04-11 10:17:02
276阅读
ProtaStructure Suite Enterprise 2018 是用于钢,混凝土和复合材料部分的多组分建模,三维有限元分析,结构细节等等的一个软件包。该软件包包括现场施工和非线性分析,隔震,非线性元素转换,地震评估和改造等先进工具。ProtaDetails最新版2018 sp1是专为工程师和设计专业人士自动生成结构设计,定制,设计和部件设计管理的专用系统。 ProtaStee
如何对caffe的网络模型进行可视化?一、安装netron1.windows版本:    下载可执行文件或在终端运行: winget install netron2.Linux版本:   运行:snap install netron   启动:netron Netron不仅支持Caffe(caffemodel),还支持pytorch(pth),ONNX(.onnx, .pb) 
转载 2021-04-21 08:46:06
557阅读
2评论
1. 什么是树结构? 主要用来表达个体之间的层次结构。比如:计算机公司的组织结构。 2. 树结构可视化方法有哪些呢? 结点链接法:结构清晰。用点表示树的结点,用点链接表示结点之间的关系;核心问题是如何在屏幕上放置结点,如何绘制结点之间的链接关系。 正交布局:结点按照水平或垂直对齐,布局与坐标轴一致
原创 2021-06-28 09:17:35
1083阅读
风向,直观形象,也是地图数据和现实数据在可视化上很好的结合。        这是我见的第一个风向,记得是2012年吧,当时觉得很有意思,作为一名技术人员,自然好奇它是如何做到的,是Canvas还是SVG?但当时没深究。最近正好有人(大哥)提到了这个,不妨深入了解,一探究竟。于是乎,发现原来还有这么多玩法,大同小异,比如说这个
转载 2024-08-19 20:40:42
115阅读
最近一直在搞课题,因为看代码不直观,所以将网络结构进行可视化处理。使用了两种方法,各有优缺点,下面记录一下使用方法供人参考方法一:torchsummary可视化torchsummary可视化是pytorch可视化的一种方法,需要安装库,关于库的安装可以搜一下帖子,然后就是关于使用方法。首先导入这个库,在model里更改需要可视化结构,这里我可视化的是我的判别器,然后传入网络设定的256x1024
导读:前几篇文章分别对应用Tableau制作折线图、条形可视化地图进行了介绍,本文介绍另一大可视化图表利器——饼。尤其是最后给出了玫瑰制作方法。01 基本饼常用于表达多个子类的占比,通过观察饼扇形角度的大小,可快速对比各子类间的相对关系。在Tableau中,制作饼比较方便,仅需依次将类别和相应度量信息拖动到标记区的颜色和大小即可。仍然以Tableau自带的超市数据集为例,制作各地
pyecharts 是一个基于 ECharts 的 Python 数据可视化库,它允许用户使用 Python 语言生成各种类型的交互式图表和数据可视化。ECharts 是由百度开发的一款强大的开源数据可视化库,而 Pyecharts 则是 ECharts 的 Python 封装,使得在 Python 中使用 ECharts 变得更加方便。pyecharts 提供了一组简单而灵活的 API,使用户能
雷达作为一种强大的数据可视化图表,在数据分析工作中发挥着重要的作用。 在数据驱动的时代,我们每天都需要面对海量的数据,这些数据包含着丰富的信息,但要从中提取有价值的见解并进行有效的比较和分析却并不容易。而雷达作为一种强大的数据可视化图表,在数据分析工作中发挥着重要的作用。  雷达以其独特的形式将多个指标呈现在一个图形中,形成了一
随着深度神经网络做的的发展,网络的结构越来越复杂,我们也很难确定每一层的输入结构,输出结构以及参数等信息,这样导致我们很难在短时间内完成debug。因此掌握一个可以用来可视化网络结构的工具是十分有必要的。类似的功能在另一个深度学习库Keras中可以调用一个叫做model.summary()的API来很方便地实现,调用后就会显示我们的模型参数,输入大小,输出大小,模型的整体参数等,但是在PyTorc
1) 可视化模型结构from torchviz import make_dot model = ResNet18() print(model) #输出模型的详细信息 x = torch.randn(1,3,32, 32).requires_grad_(True) y = model(x) vis_graph = make_dot(y, params=dict(list(model.named
转载 2024-01-13 21:58:43
83阅读
1.在数据可视化产品中,一般都包括哪些视图?我们常用的可视化视图超过20种,分别包括:文本表、热力图、地图、符号地图、饼、水平条、堆叠条、并排条、树状、圆视图、并排圆、线、双线、面积、双组合、散点图、直方图、盒须、甘特图、靶心、气泡等。要了解使用它们背后的目的是什么,可以分为以下的9种情况:比如说,你想呈现某个变量的分布情况,就可以通过直方图的形式来呈现。如果你想要看两个变量之间的相关
数据可视化简介可视化:用可视形式进行解释的动作或过程;形象可视化的作用记录信息 分析推理 证实假设 交流思想可视化的原因因为当今处于信息爆炸的时代,处理数据的能力成为了一项至关重要的技术。通过进行可视化可以很好的对大量数据进行处理并很好的展现出来。可视化的总结协助思考 使用感知代替认知 作为大量工作记忆的外界辅助 增强认知能力视觉感知与认识感知:关于输入信号的本质;    看见的东西 认知:关于
后端是处理数据提取用户想要的数据。简单常用的是Python,相对于java,c, c++,Python简直对初学者太友好,提供丰富多彩的API接口,比如常见的降维聚类算法:PCA, t-SNE, MDS, k-means等。如果用c实现过PCA算法有几百行代码,可在Python里只需要三行代码。那如何用Python实现对Iris数据集使用PCA算法以及展示效果? 建议新手使用Python练手操作门
Matplotlib 库使用入门5——饼pie() 函数绘制饼图示例 在前面关于 matploblib 的文章中,笔者分别介绍了: matplotlib 库的安装与配置,常用套路和绘图组件。画布和绘图域的创建、素的设置、用 plot 函数绘制线图并设置图例、网格绘制多种柱状绘制直方图本篇介绍 matplotlib 绘制饼的方法。饼(Pie)用来显示一个数据系列,具体来说,饼状显示一个
  • 1
  • 2
  • 3
  • 4
  • 5