# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import tempfile
from tensorflow.examples.tutori
转载
2024-03-28 16:50:29
105阅读
深度学习-卷积神经网络TensorFlow卷积神经网络卷积和神经网络卷积层TensorFlow中卷积层的实现池化层TensorFlow实现池化层TensorFlow实现简单的卷积神经网络 卷积神经网络卷积神经网络(Convolutional Neural Networks)是近些年逐步兴起的一种人工神经网络结构,因为利用卷积神经网络在图像和语音识别方面能够给出更优预测结果,这一种技术也被广泛的传
转载
2024-03-31 19:04:09
73阅读
利用Pytorch搭建神经网络 在完成李宏毅2020机器学习图像分类(hw3)时,需要具备会使用pytorch的能力,通过pytorch的官方教程进行学习https://pytorch123.com/训练神经网络的步骤如下: 1.定义神经网络(普通CNN为例)
转载
2023-05-29 15:54:15
243阅读
Pytorch卷积神经网络一、Pytorch一维卷积神经网络import torch.nn as nn
nn.Conv1d( in_channels: int,
out_channels: int,
kernel_size: int,
stride: int, default = 1
pad
转载
2024-08-07 12:07:24
48阅读
相隔很久,还是在处理的过程中遇见卷积,这个是必不可少的,于是这里就好好的看看实现过程,让印象更加的深刻。下面从四个方面来看:1 卷积和相关的定义2 一维相关的解释3 二维卷积的解释4 相关与卷积的联系一、卷积与相关的定义1.卷积定义:函数f(x)和h(x),其卷积运算用符号f(x)*h(x)表示,定义为如下积分 2.函数f(x)和h(x)的相关定
模型架构输入数据:n*784的数据第一层卷积:卷积层1(filter=3* 3*1,个数为64个,padding=1,s=1)第一层池化:池化层1(maxpooling:2*2,s=2)第二层卷积:卷积层2(filter:3* 3* 64,128个filter,padding=1,s=1)第二层池化:池化层2(maxpooling:2*2,s=2)全连接层第一层:全连接层第一层(总结为1024个向
转载
2024-04-15 12:30:50
80阅读
1、NN----神经网络2、CNN卷积神经网络CNN网络一共有5个层级结构:输入层卷积层激活层池化层全连接FC层 一、输入层与传统神经网络/机器学习一样,模型需要输入的进行预处理操作,常见的输入层中预处理方式有:去均值归一化PCA/SVD降维等1、去均值:各维度都减对应维度的均值,使得输入数据各个维度都中心化为0,进行去均值的原因是因为如果不去均值的话会容易拟合。2、归一化:一种是最值归
转载
2023-10-21 11:27:53
67阅读
卷积卷积(Convolution),也叫摺积,是分析数学中一种重要的运算。在信号处理或图像处理中,经常使用一维或二维卷积。一维卷积一维卷积经常用在信号处理中,用于计算信号的延迟累积。
假设一个信号发生器每个时刻 \(t\) 产生一个信号 \(\mathcal{x}_{t}\) ,其信息的衰减率为 \(w_{k}\),即在 \(k − 1\) 个时间步长后,信息为原来的 \(w_{k}\) 倍。假设
转载
2023-05-23 09:47:26
1237阅读
概述许多技术文章a都关注于二维卷积神经网络(2D CNN)的使用,特别是在图像识别中的应用。而一维卷积神经网络(1D CNNs)只在一定程度上有所涉及,比如在自然语言处理(NLP)中的应用。目前很少有文章能够提供关于如何构造一维卷积神经网络来解决你可能正面临的一些机器学习问题。本文试图补上这样一个短板。 何时应用 1D CNN?CNN 可以
转载
2024-03-05 13:59:53
67阅读
本文基于matlab2020版官方网页DocumentationCrack Identification From Accelerometer Data及个人理解。该示例显示了如何使用小波wavelet和深度学习技术来检测横向路面裂缝并确定其位置。该示例演示了将小波散射序列用作门控循环单元(GRU)和一维卷积网络的输入,以便根据是否存在裂缝对时间序列进行分类。数据是从安装在前排乘客座椅车轮的转向节
转载
2023-11-08 23:15:31
177阅读
1、cnn卷积神经网络的概念卷积神经网络(CNN),这是深度学习算法应用最成功的领域之一,卷积神经网络包括一维卷积神经网络,二维卷积神经网络以及三维卷积神经网络。一维卷积神经网络主要用于序列类的数据处理,二维卷积神经网络常应用于图像类文本的识别,三维卷积神经网络主要应用于医学图像以及视频类数据识别。2、卷积神经网络结构卷积神经网络通常包含以下几层:卷积层:卷积神经网路中每层卷积层由若干卷积单元组成
转载
2023-10-11 20:36:33
871阅读
目录1.算法描述2.仿真效果预览3.MATLAB核心程序4.完整MATLAB1.算法描述 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一
转载
2023-11-09 11:58:05
68阅读
卷积神经网络算法是什么?一维构筑、二维构筑、全卷积构筑。卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平
转载
2023-08-11 17:26:21
134阅读
这个系列记录下自己的深度学习练习,本文主要尝试了使用简单的卷积神经网络(CNN)解进行机器学习,因为数据样本贴合度可能不hi很好,实际效果并不是很明显。请读者理解原理就好,本人也是在不断摸索中。这个系列一开始曾经用二维卷积神经网络对图像数据进行应用,本文主要是使用一维卷积神经网络,对序列数据进行机器学习,可以理解为将原始数据变换为一维的序列段,与二维卷积神经网络一样,这一步运算的作用
转载
2023-05-18 15:37:44
613阅读
一 Tensorflow的游乐场及其神经网络的简介 此块,我们将通过Tensorflow的游乐场来快速的介绍神经网络的主要功能。Tensorflow游乐场的链接如下所示:https://playground.tensorflow.org,这是一个可以通过网络浏览器就可以训练的简单的神经网络,并可以实现可视化训练过程的工具。其具体的截图如下所示:&
转载
2023-12-20 06:47:02
61阅读
2017年2月16日,Google正式对外发布Google TensorFlow 1.0版本,并保证本次的发布版本API接口完全满足生产环境稳定性要求。这是TensorFlow的一个重要里程碑,标志着它可以正式在生产环境放心使用。在国内,从InfoQ的判断来看,TensorFlow仍处于创新传播曲线的创新者使用阶段,大部分人对于TensorFlow还缺乏了解,社区也缺少帮助落地和使用的中文资料。I
转载
2024-10-24 08:39:31
33阅读
当我们说卷积神经网络(CNN)时,通常是指用于图像分类的2维CNN。但是,现实世界中还使用了其他两种类型的卷积神经网络,即1维CNN和3维CNN。在本指南中,我们将介绍1D和3D CNN及其在现实世界中的应用。我假设你已经大体上熟悉卷积网络的概念。2维CNN | Conv2D这是在Lenet-5架构中首次引入的标准卷积神经网络。Conv2D通常用于图像数据。之所以称其为2维CNN,是因为
搭建TensorFlow环境一、实验介绍1.1 实验内容TensorFlow 是 Google 开发的一款神经网络的 Python 外部的结构包,也是一个采用 数据流图 来进行数值计算的开源软件库。它被用于语音识别或图像识别等多项机器深度学习领域,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。本实验学习 TensorFlow 的基础操作,并用其实现经典的 卷积神经网络 (Con
转载
2023-08-23 17:57:44
202阅读
一维卷积一维卷积的输入是一个向量和一个卷积核,输出也是一个向量。通常状况下,输入向量长度远大于卷积核的长度。输出向量的长度取决于卷积操作的填充方案,等宽卷积的输出向量的和输入的向量长度相等。卷积核的长度通常是奇数,这是为了对称设计的。一个例子: 一维卷积示例 注意相乘的顺序是相反的,这是卷积的定义决定的。输出长度是7,卷积核长度是3,输出的长度是7-3+1 = 5。也就是说这里的
转载
2023-07-29 22:04:29
843阅读
在TensorFlow学习笔记(8):CNN实现中我们以图像处理为场景对卷积神经网络进行了介绍,包括了卷积操作和pooling操作的实现,其中卷积和pooling都采用了二维的操作,输入数据是四维的,shape = [batch, in_height, in_width, in_channels],例如图像像素为28 * 28, RGB三色道表示,batch取100,那么shape
转载
2024-02-02 13:42:00
180阅读