背景softmax在MNIST数据集上的正确率只有91%,不是很好,在这里,我们用卷积神经网络(Convolutional Neural Network,CNN)来改善效果。这会达到大概99.2%的准确率。权重初始化为了创建这个模型,我们需要创建大量的权重和偏置项。这个模型中的权重在初始化时应该加入少量的噪声来打破对称性以及避免0梯度。由于我们使用的是ReLU(线性纠正函数)神经元,因此比较好的做
教程目的如何利用TensorFlow使用(经典)MNIST数据集训练并评估一个用于识别手写数字的简易前馈神经网络(feed-forward neural network),从中我们可以学习到tensorflow的运行原理与结构tensorflow运行原理TensorFlow 是一款用于数值计算的强大的开源软件库,特别适用于大规模机器学习的微调。 它的基本原理很简单:首先在 Python 中定义要执
转载 2024-06-28 20:10:26
39阅读
基于DNN-HMM的语音识别声学模型结构如下图所示,与传统的基于GMM-HMM的声学模型相比,唯一不同点在于用DNN替换了GMM来对输入语音信号的观察概率进行建模。DNN与GMM相比具有如下优点:DNN不需要对声学特征所服从的分布进行假设;DNN的输入可以采用连续的拼接帧,因而可以更好地利用上下文的信息;DNN的训练过程可以采用随机优化算法来实现,而不是采用传统的批优化算法,因此当训练数据规模较大
转载 2023-10-28 13:14:51
251阅读
最近一直在研究用opencv的dnn模块调用已训练好的tensorflow .pb模型。先声名一下,最终还是没有调用成功,但是中间趟过了好多的坑,觉得有必要记录一下,并且最终没有调用成功的主要原因是我想要加载的模型中的一部分确实是和opencv调用tensorflow模型存在冲突。 首先,我想要调用的模型是keras训练出来的OCR模型,因此,需要先把已有的.hdf5模型文件转换成.pb文件,这里
编辑 | 嘉仔当我们提到 TensorFlow 的时候,我们仅仅只会关注它是一个很好的神经网络和深度学习的库。但是,其实 TensorFlow 具有 tf.cond( https://www.tensorflow.org/api_docs/python/tf/cond ) 和 tf.while_loop( https://www.tensorflow.org/api_
转载 4月前
559阅读
# DNN模型的Python实现 深度神经网络(DNN)是一种强大的机器学习技术,可以用于图像识别、自然语言处理等诸多领域。本文将深入探讨DNN的基本构成、实现方法以及示例代码,帮助读者更好地理解该技术。 ## 深度神经网络简介 深度神经网络是由多层人工神经元构成的网络结构。与传统的神经网络相比,DNN包含多个隐含层,使其能够捕捉数据中的复杂关系。每一层通过激活函数处理输入并传递给下一层,从
书接上文,上面介绍的是DNN的基本结构和一些要用到的公式。在这里我将要说一下DNN的前向传播,上图先:我来解释一下这个图。layer1是输入层,layer2是隐藏层,layer3是输出层。当然层数不是固定的,每层的神经元个数也不是固定的。一般来说第一层是输入参数的,最后一层是输出层,中间的都叫做隐藏层。在输入层,每一个参数对应一个神经元(可以这么理解),每一个参数都要传给下一层(隐藏层),虽然输入
转载 2024-04-11 22:50:44
198阅读
目录1. DNN-HMM语音识别系统2. 深度神经网络前馈神经网络FNN卷积神经网络CNNCNNTDNN循环神经网络RNNLSTM混合神经网络3. 总结4. 作业代码 1. DNN-HMM语音识别系统 DNN-HMM语音识别系统的训练流程是在我们上一节所学的GMM-HMM语音识别系统的基础上,加上了对齐和DNN训练的方式。其流程图如下图所示:      2. 深度神经网络 首先来了解一些神经网络
TensorFlow提供了优化器,可以缓慢地更改每个变量,以便最小化损失函数。最简单的优化器是梯度下降。它根据相对于该变量的损失导数的大小修改每个变量。通常,手动计算符号导数是冗长乏味且容易出错的。因此,TensorFlow可以使用函数tf.gradients自动生成仅给出模型描述的导数。为了简单起见,优化器通常为您做这个。例如optimizer = tf.train.GradientDescen
转载 2024-03-29 10:02:06
48阅读
这次在模型优化的时候加入了一个RNN结构,TensorFlow里有封装好的RNN函数,我们可以直接调用,RNN详细介绍见参考资料2TensorFlow官网给的标准API:注意: 这个是TF1.0版本下的,在2.0以上版本,dynamic_rnn是在 tf.compat.v1.nn.dynamic_rnntf.nn.dynamic_rnn( cell, inputs, seq
# 使用Java进行TensorFlow DNN推理 在机器学习和深度学习领域,TensorFlow已成为广泛使用的框架之一。对于Java开发者来说,尽管Python是TensorFlow的主要开发语言,但我们也可以使用Java进行深度神经网络(DNN)的推理。本文将为大家介绍如何在Java中使用TensorFlow进行DNN推理,并提供相应的代码示例。 ## 1. TensorFlow概述
原创 2024-10-27 05:58:56
16阅读
深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN模型与前向传播算法做一个总结。 1. 从感知机到神经网络    在感知机原理小结中,我们介绍过感知机的模型,它是一个有若干输入和一个输出的模型,如下图:    输出和输入之间学习到一个线性关系,得到中间输出结果:     接着
转载 2024-08-09 17:33:49
84阅读
从helloworld开始mkdir 1.helloworld cd 1.helloworld vim helloworld.py代码:# -*- coding: UTF-8 -*- # 引入 TensorFlow 库 import tensorflow as tf # 设置了gpu加速提示信息太多了,设置日志等级屏蔽一些 import os os.environ['TF_CPP_MIN_L
TensorFlow模型实现:UNet模型1.UNet模型# -*-coding: utf-8 -*-""" @Pro
原创 2022-08-24 17:04:33
319阅读
ML2021Spring-Pytorch Turial中的Overview of the DNN Training Procedure图太清晰啦,记录一下:1. Load Data需要对数据进行加载、处理,创建DataLoader,可以将整块数据用DataLoader类处理成小块batch_size形式,后续进行迭代循环,并输入到模型中进行训练。2. Define Neural Network随后
感谢中国人民大学的胡鹤老师,人工智能课程讲的很有深度,与时俱进由于深度神经网络(DNN)层数很多,每次训练都是逐层由后至前传递。传递项<1,梯度可能变得非常小趋于0,以此来训练网络几乎不会有什么变化,即vanishing gradients problem;或者>1梯度非常大,以此修正网络会不断震荡,无法形成一个收敛网络。因而DNN的训练中可以形成很多tricks。。1、初始化权重起初
转载 2023-09-14 18:35:32
150阅读
目录0 TensorFlow的建模流程1 准备数据2 定义模型3 训练模型4 评估模型5 使用模型6 保存模型 0 TensorFlow的建模流程尽管TensorFlow设计上足够灵活,可以用于进行各种复杂的数值计算。但通常人们使用TensorFlow实现机器学习模型,尤其常用于实现神经网络模型。从原理上说可以使用张量构建计算图来定义神经网络,并通过自动微分机制训练模型。但为简洁起见,一般推荐
1. BN层的作用优势: (1)BN使得网络中每层输入数据的分布相对稳定,加速模型学习速度 (2)BN使得模型对网络中的参数不那么敏感,简化调参过程,使得网络学习更加稳定 (3)BN允许网络使用饱和性激活函数(例如sigmoid,tanh等),缓解梯度消失问题 (4)BN具有一定的正则化效果劣势: (1)batch_size较小的时候,效果差 (2)RNN中效果差 (3)测试阶段 训练和测试详细内
关于 JAVA 学习 OpenCV 的内容,函数讲解。内容我均整理在 GitHubd的OpenCV3-Study-JAVACvType 可以说是 OpenCV 图像处理的基础常量参数。但是面对 CV_8U1C 、CV_8U2C、CV_8U3C、CV_8U4C 在初学阶段可以说一脸懵,他们代表的是什么呢?关于这些参数名门的来历,个人觉得有点 [匈牙利命名法] 的影子。1. 什么是图像的通道?在了解
我们需要评估模型预测值来评估训练的好坏。 模型评估是非常重要的,随后的每
原创 2022-07-08 13:02:43
352阅读
  • 1
  • 2
  • 3
  • 4
  • 5