1.tf.Graph()你一旦开始你的任务,就已经有一个默认的图已经创建好了。而且可以通过调用tf.get_default_graph()来访问到。 添加一个操作到默认的图里面,只要简单的调用一个定义了新操作的函数就行。比如下面的例子展示的:import tensorflow as tf
import numpy as np
c=tf.constant(value=1)
print(c
转载
2023-10-13 15:13:40
89阅读
【代码】tensorflow tf.where 实例。
原创
2022-12-24 00:29:15
68阅读
简单代码# -*- coding: utf-8 -*-# @Author: yanqiang# @Date
原创
2023-05-17 15:27:35
80阅读
TF 手写体识别简单实例: TensorFlow很适合用来进行大规模的数值计算,其中也包括实现和训练深度神经网络模型。下面将介绍TensorFlow中模型的基本组成部分,同时将构建一个CNN模型来对MNIST数据集中的数字手写体进行识别。 基本设置 在我们构建模型之前,我们首先加载MNIST数据集,
转载
2018-09-29 12:01:00
142阅读
2评论
Tensorflow代码笔记(一)tf.app.run函数入口,类似于c/c++中的main(),大概意思是通过处理flag解析,然后执行main函数。 有两种情况: · 如果你的代码中的入口函数不叫main(),而是一个其他名字的函数,如test(),则你应该这样写入口tf.app.run(test) · 如果你的代码中的入口函数叫main(),则你就可以把入口写成tf.app.run()tf.
转载
2024-03-19 08:27:39
68阅读
# Python TensorFlow 实例:深度学习的入门指南
## 一、什么是 TensorFlow?
TensorFlow 是一个开源的机器学习框架,由谷歌于 2015 年发布。它可以用于构建和训练各种类型的神经网络,方便研究者和工程师快速实现和测试他们的模型。TensorFlow 支持多种平台,包括 CPU、GPU 和移动设备,这使得它在深度学习领域得到了广泛的应用。
## 二、Te
原创
2024-08-14 06:28:36
20阅读
# Python TensorFlow 实例入门
TensorFlow 是一个开源的深度学习框架,由 Google Brain 团队开发。它广泛应用于机器学习和人工智能领域,帮助科研人员和开发者构建和训练复杂的神经网络。在本文中,我们将通过一个简单的例子来演示 TensorFlow 的基本用法,并理解模型的训练过程。
## 安装 TensorFlow
在开始之前,确保你已经安装了 Tenso
条件随机场(crf)及tensorflow代码实例对于条件随机场的学习,我觉得应该结合HMM模型一起进行对比学习。首先浏览HMM模型一、定义 条件随机场(crf):是给定一组输入随机变量条件下,另一组输出随机变量的条件概率的分布模型,其特点是假设输出随机变量构成马尔科夫随机场。本文所指线性链条件随机场。 隐马尔科夫模型(HMM):描述由隐藏的马尔科夫链随机生成观测序列的过程,属于生成模型。
转载
2019-08-31 09:04:00
288阅读
2评论
一、TensorFlow运行模型——会话1、通过创建会话(session)来执行定义好的运算# 创建一个会话
sess = tf.Session()
# 使用这个创建好的会话来得到关心的运算的结果。比如可以调用sess.run(result)
sess.run(...)
# 关闭会话使得本次运行中得到的资源可以被释放
sess.close()通过Python上下文管理器的机制,只要将所有的计算放在
转载
2024-04-16 19:55:33
81阅读
TensorFlow.js是什么一个用JavaScript实现的机器学习库。可以直接在浏览器和Node.js中适用机器学习技术了。通过上面两点可以知道TensorFlow.js首先是一个工具库,并不是一个产品,不能直接帮助我们创造价值,但是我们可以利用这个工具库开发出一个产品来创造价值。其实TensorFlow是利用JS实现,我么都知道Python是人工智能的主流语言,有了TensorFlow.j
转载
2024-01-04 06:43:17
46阅读
迁移学习,是把已训练好的模型(预训练模型)参数迁移到新的模型来帮助新模型训练。考虑到大部分数据或任务都是存在相关性的,所以
import tensorflow as tf
原创
2023-01-13 00:37:35
113阅读
TensorFlow 是一个用于人工智能的开源神器 ,主要为深度学习算法提供了很多函数,以及独特的运算支持。废话不多说直接上干货。我的环境:python3.7tensorflow==1.13.2numpy==1.20.21、入门示例import tensorflow as tf
# 第一步:定义计算(计算图)
a = tf.constant([1, 2])
b = tf.constant([2,
import tensorflow as tfa = tf.constant([[1,2,3],[1,2,3]])b = tf.constant([[2,3,4]])print(a.get_shape())print(b.get_shape())c = a*bc= tf.Print(c,[c])with tf.Session() as sess: print(sess.run(c))prin
原创
2022-07-19 11:38:33
79阅读
import tensorflow as tf# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点# 加到默认图中.## 构造器的返回值代表该常量 op 的返回值.matrix1 = tf.constant([[3., 3.]])# 创建另外一个常量 op, 产生一个 2x1 矩阵.matrix2 = tf.constant([[2.],[2.]])# 创建一个矩阵乘法
原创
2023-01-13 06:03:18
349阅读
import tensorflow as tftf_file_writer = tf.python_io.TFRecordWriter("tmp")fea = [1,2,3]#tf.ones(shape=[3,2],dtype=tf.float32)label_vector= [4,5,6]#tf.zeros([2],dtype=tf.float32)example = tf.train....
原创
2022-07-19 11:51:30
53阅读
TensorFlow 更新频率实在太快,从 1.0 版本正式发布后,很多 API 接口就发生了改变。今天用 TF 训练了一个 CNN 模型,结果在保存模型的时候居然遇到各种问题。Google 搜出来的答案也是莫衷一是,有些回答对 1.0 版本的已经不适用了。后来实在没办法,就翻了墙去官网看了下,结果分分钟就搞定了~囧~。这篇文章内容不多,主要讲讲 TF v1.0 版本中保存和读取模型的最简单用法,
转载
2024-09-02 12:22:06
25阅读
一、如何在Ubuntu上编辑和运行TensorFlow包下的代码(1)使用vim编辑器编辑,终端运行代码 该方法首先需要打开Ubuntu的终端,然后输入以下代码进入Anaconda管理下安装了TensorFlow包的Python环境:zlt@zlt-virtual-machine:~/download/MyTfTest$ source activate tensorflow 成功运行后即可在前面看
转载
2024-05-01 20:53:48
134阅读
摘要:Tensorflow Distributions提供了两类抽象:distributions和bijectors。distributions提供了一系列具备快速、数值稳定的采样、对数概率计算以及其他统计特征计算方法的概率分布。bijectors提供了一系列针对distribution的可组合的确定性变换。1、Distributions1.1 methods一个distribution至少实现以
转载
2024-05-06 14:04:10
25阅读
x = tf.placeholder(tf.float32, [None, 784])x isn't a specific value. It's a placeholder, a value that we'll input when we ask TensorFlow to run a computation. We want to be able to input any
转载
2024-04-30 05:59:33
35阅读