win7 + tensorflow_gpu环境搭建软件环境Anaconda安装Visual Stutio安装CUDA安装cudnn安装pyTorch安装tensorflow-gpu安装keras安装 软件环境环境版本Anaconda3.5.1visual studiovs2015cuda9.0cudnn7.0python3.6tensorflow-gpu1.9.0keras2.2.0GPUNVI
目录简介分类问题和回归问题为什么需要目标函数one hot 编码实战2-3 实战分类模型之数据读取与展示导入经常要用到的数据库下载数据集2-4构建模型训练模型显示学习曲线对测试集 进行评估2.5数据归一化2.6回调函数2.7回归模型2.8神经网络讲解2.9构建深度神经网络2.10 批归一化,激活函数,dropout 简介kerasTensorFlow 的有个高级APITf-keras 是Te
转载 2024-03-18 12:23:34
130阅读
tensorflow笔记
原创 2022-08-12 14:45:38
112阅读
# TensorFlow 2是否需要安装KerasTensorFlow 2中,集成了Keras作为其高级神经网络API,因此在使用TensorFlow 2时无需单独安装Keras。在TensorFlow 2中,Keras类和函数直接作为tf.keras的一部分提供,可以方便地构建、训练和评估神经网络模型。 下面将详细说明如何使用TensorFlow 2构建一个简单的神经网络模型,并训练该模
原创 2024-05-06 10:49:50
288阅读
一、简介Keras 是一个用于构建和训练深度学习模型的高阶 API。它可用于快速设计原型、高级研究和生产
原创 2022-06-28 11:45:54
328阅读
一、函数式apitf.keras.Sequential 模型只适用于多层简单堆叠网络,不能表示复杂模型。使用 Keras functional API 可以构建有
原创 2022-06-28 11:45:30
485阅读
在上一篇文章中,我们介绍了高效的数据流水线模块 tf.data 的流水线并行化加速。本篇文章我们将介绍 TensorFlow 另一个数据处理的利器——TFRecord。TFRecord :TensorFlow 数据集存储格式TFRecord 是 TensorFlow 中的数据集存储格式。当我们将数据集整理成 TFRecord 格式后,TensorFlow 就可以高效地读取和处理这些数据集,从而帮助
转载 2024-04-15 09:54:39
53阅读
硬件 i7-10700K+RTX2080S软件Win10Miniconda3-py37_4.8.2-Windows-x86_64cuda10.1cudnn7.6.5tensorflow2.3.0安装过程网上看到很多教程都是先把CUDA、cuDNN安装下来再一步步安装。流程没毛病,不过,英伟达的官网就有点恶心,奇慢无比,还时不时的打不开,好不容易打开了网页,下载又下载不下来,要么就一动不动
数据管道Dataset1.Dataset类相关操作1.1 Dataset类创建数据集1.2 Dataset类数据转换 知识树 1.Dataset类相关操作1.1 Dataset类创建数据集tf.data.Dataset 类创建数据集,对数据集实例化。 最常用的如:tf.data.Dataset.from_tensors() :创建Dataset对象, 合并输入并返回具有单个元素的数据集。tf.
Tensorflow2自定义Layers之__init__,build和call详解闲言碎语:--init--,build和call总结 参考官方链接:https://tensorflow.google.cn/tutorials/customization/custom_layers闲言碎语:如果想要自定义自己的Layer,那么使用tf.keras.Layer 来创建自己的类是必不可少的。但是笔
菜鸟学TensorFlow 2.0:TensorFlow2.0基础操作演示1. Tensor数据类型2. 创建Tensor3. Tensor索引和切片4. Tensor维度变换5. Broadcast6. 数学运算7. 手写数字识别流程8. TensorFlow实现神经网络参考资料 1. Tensor数据类型TensorFlow没有那么神秘,为了适应自动求导和GPU运算,它应运而生。为了契合nu
一、《深度学习之Tensorflow入门原理与进阶实战》1、第三章import tensorflow as tf import numpy as np import matplotlib.pyplot as plt trainx=np.linspace(-1,1,100) trainy=2*trainx+np.random.randn(*trainx.shape)*0.3 #y=2x with
转载 2024-05-25 16:55:42
130阅读
本篇博客介绍了在Windows 10系统 Anconda环境下安装cpu版本tensorflow1.14和tensorflow2.3.0及对应Keras的详细过程,期间遇到的问题和解决方法也一并记录了下来。在正式介绍安装过程之前,大家可以先了解以下几点内容,1、TensorFlow 1.x 和 2.x2TensorFlow与Python版本对应 这一项一定要查看最新的资料,博主看的一些
转载 2024-08-30 14:09:42
395阅读
1. 前言:自从Google发布了TensorFlow2.0后,个人觉得与TensorFlow1相比是一个重大的突破,它不仅仅删除了许多旧的库并进行整合,还促进了Keras在搭建模型中的使用,通过高级API Keras让模型构建和部署变得简单。 我们在用TensorFlow2.0创建模型时,可以使用Keras函数API定义模型或者顺序API定义模型。本文将使用Keras函数API来定义CNN模型,
转载 2024-04-03 12:54:45
37阅读
1. 权重保存和加载# 保存为TensorFlow checkpoint格式model.save_weights('./my_model')# 保存为Te
原创 2019-11-26 07:42:29
119阅读
前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署TensorFlow 模型导出 使用 SavedModel 完整导出模型不仅包含参数的权值,还包含计算的流程(即计算图)tf.saved_model.save(model, "保存的目标文件夹名称")将模型导出为 SavedModelmodel = tf.saved_model.load("保存的目标文件夹名
转载 2024-05-13 12:55:58
0阅读
1 配置环境首先确保已经配置好tensorflow2和cuda、cudnn环境,不要下载错。配置的教程已经有很多,自行查阅2 安装APItf2 object detection 的安装参考此博客,TensorFlow 2 Object Detection API 物体检测教程 虽然这是linux系统下的,但是操作可以类比。简单地说只有三步 1.下载model-master并解压 其中tensorf
转载 2024-05-06 14:49:06
128阅读
机器学习问题不仅是一个科学问题,更是一个工程问题。大多数年轻的数据科学家都希望将大部分时间花在构建完美的机器学习模型上,但是企业不仅需要训练一个完美的模型,同时也需要将其部署,向用户提供便捷的服务。如下图所示,机器学习系统由机器学习代只包含一小部分,而在中间的小黑匣子周围,所需要的基础设施庞大而复杂。因此,在实际应用中,一个优秀的程序员不仅要学会构建完美的机器学习模型上,同时还需要将其部署向用户提
文章目录1. 基础知识1.1 张量生成1.2 常用函数1.3 实例: 鸢尾花分类2. 神经网络的优化过程(手工实现)2.1 预备知识2.2 神经网络复杂度2.3 激活函数2.4 损失函数2.5 缓解过拟合2.6 优化器3. 搭建网络(内置八股方式)3.1 基础八股3.2 搭建网络结构类4. 搭建网络(进阶)4.1 自制数据集4.2 数据增强4.3 断点续训4.4 参数提取4.5 acc曲线与los
转载 2024-05-01 14:29:32
39阅读
对于我近几天使用TensorFlow2出的问题做个总结:1,是环境配置问题,我使用的是NVIDIA物理加速,就是GPU。TensorFlow-gpu 2.0.0,CUDA10.0,cudnn7.6.5。这仨之间的版本要一致,在TensorFlow官网查看对应CUDA的版本,再从NVIDIA官网下载对应CUDA的cudnn版本。2,CUDA目前最新版本是10.1,TensorFlow2应该是...
原创 2021-11-26 11:04:26
349阅读
  • 1
  • 2
  • 3
  • 4
  • 5