1. 问题描述出现原因:tensorflow版本与keras版本不对应(图片是取自一位叫皮肤科大白的博主)如果两个版本不对应就会出现上述问题解决办法:查找自己tensorflow的版本号,根据tensorflow版本安装对应版本的keras#查找tensorflow版本号
pip list
#或者
conda list2.问题描述出现原因:在tensorflow2.X.X版本中,许多函数都与ver            
                
         
            
            
            
            TensorFlow:如何冻结模型并使用python API提供服务 我们将探讨在生产中使用ML模型的两个部分:如何导出模型并为其提供简单的自给自足文件如何使用TF构建一个简单的python服务器(使用flask)注意:如果你想看到我保存/加载/冻结的图表类型,你可以在这里如何冻结(导出)已保存的模型如果您想知道如何使用TensorFlow保存模型,请在继续之前查看我之前的文章。让我们从            
                
         
            
            
            
            在上一篇文章中,我们介绍了高效的数据流水线模块 tf.data 的流水线并行化加速。本篇文章我们将介绍 TensorFlow 另一个数据处理的利器——TFRecord。TFRecord :TensorFlow 数据集存储格式TFRecord 是 TensorFlow 中的数据集存储格式。当我们将数据集整理成 TFRecord 格式后,TensorFlow 就可以高效地读取和处理这些数据集,从而帮助            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-15 09:54:39
                            
                                53阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
             数据管道Dataset1.Dataset类相关操作1.1 Dataset类创建数据集1.2 Dataset类数据转换  知识树 1.Dataset类相关操作1.1 Dataset类创建数据集tf.data.Dataset 类创建数据集,对数据集实例化。 最常用的如:tf.data.Dataset.from_tensors() :创建Dataset对象, 合并输入并返回具有单个元素的数据集。tf.            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-30 14:33:00
                            
                                64阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            硬件 i7-10700K+RTX2080S软件Win10Miniconda3-py37_4.8.2-Windows-x86_64cuda10.1cudnn7.6.5tensorflow2.3.0安装过程网上看到很多教程都是先把CUDA、cuDNN安装下来再一步步安装。流程没毛病,不过,英伟达的官网就有点恶心,奇慢无比,还时不时的打不开,好不容易打开了网页,下载又下载不下来,要么就一动不动            
                
         
            
            
            
            一、《深度学习之Tensorflow入门原理与进阶实战》1、第三章import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
trainx=np.linspace(-1,1,100)
trainy=2*trainx+np.random.randn(*trainx.shape)*0.3
#y=2x with            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-25 16:55:42
                            
                                130阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            菜鸟学TensorFlow 2.0:TensorFlow2.0基础操作演示1. Tensor数据类型2. 创建Tensor3. Tensor索引和切片4. Tensor维度变换5. Broadcast6. 数学运算7. 手写数字识别流程8. TensorFlow实现神经网络参考资料 1. Tensor数据类型TensorFlow没有那么神秘,为了适应自动求导和GPU运算,它应运而生。为了契合nu            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-30 04:14:05
                            
                                265阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            Tensorflow2自定义Layers之__init__,build和call详解闲言碎语:--init--,build和call总结 参考官方链接:https://tensorflow.google.cn/tutorials/customization/custom_layers闲言碎语:如果想要自定义自己的Layer,那么使用tf.keras.Layer 来创建自己的类是必不可少的。但是笔            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-02 21:42:56
                            
                                72阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            1. 前言:自从Google发布了TensorFlow2.0后,个人觉得与TensorFlow1相比是一个重大的突破,它不仅仅删除了许多旧的库并进行整合,还促进了Keras在搭建模型中的使用,通过高级API Keras让模型构建和部署变得简单。 我们在用TensorFlow2.0创建模型时,可以使用Keras函数API定义模型或者顺序API定义模型。本文将使用Keras函数API来定义CNN模型,            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-03 12:54:45
                            
                                37阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署TensorFlow 模型导出 使用 SavedModel 完整导出模型不仅包含参数的权值,还包含计算的流程(即计算图)tf.saved_model.save(model, "保存的目标文件夹名称")将模型导出为 SavedModelmodel = tf.saved_model.load("保存的目标文件夹名            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-13 12:55:58
                            
                                0阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            机器学习问题不仅是一个科学问题,更是一个工程问题。大多数年轻的数据科学家都希望将大部分时间花在构建完美的机器学习模型上,但是企业不仅需要训练一个完美的模型,同时也需要将其部署,向用户提供便捷的服务。如下图所示,机器学习系统由机器学习代只包含一小部分,而在中间的小黑匣子周围,所需要的基础设施庞大而复杂。因此,在实际应用中,一个优秀的程序员不仅要学会构建完美的机器学习模型上,同时还需要将其部署向用户提            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-26 13:41:27
                            
                                95阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            1 配置环境首先确保已经配置好tensorflow2和cuda、cudnn环境,不要下载错。配置的教程已经有很多,自行查阅2 安装APItf2 object detection 的安装参考此博客,TensorFlow 2 Object Detection API 物体检测教程 虽然这是linux系统下的,但是操作可以类比。简单地说只有三步 1.下载model-master并解压 其中tensorf            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-06 14:49:06
                            
                                128阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            对于我近几天使用TensorFlow2出的问题做个总结:1,是环境配置问题,我使用的是NVIDIA物理加速,就是GPU。TensorFlow-gpu 2.0.0,CUDA10.0,cudnn7.6.5。这仨之间的版本要一致,在TensorFlow官网查看对应CUDA的版本,再从NVIDIA官网下载对应CUDA的cudnn版本。2,CUDA目前最新版本是10.1,TensorFlow2应该是...            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2021-11-26 11:04:26
                            
                                349阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            文章目录1. 基础知识1.1 张量生成1.2 常用函数1.3 实例: 鸢尾花分类2. 神经网络的优化过程(手工实现)2.1 预备知识2.2 神经网络复杂度2.3 激活函数2.4 损失函数2.5 缓解过拟合2.6 优化器3. 搭建网络(内置八股方式)3.1 基础八股3.2 搭建网络结构类4. 搭建网络(进阶)4.1 自制数据集4.2 数据增强4.3 断点续训4.4 参数提取4.5 acc曲线与los            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-01 14:29:32
                            
                                39阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            主要将模型的搭建移植到keras,参照上一篇博客。新的差异主要如下:1. 之前我们可以初始化一个tensor,可以通过tf.nn,或者tf.layers模块,有些模块中出现了重复的片段,因此新的版本保留的前提下,  引入了一个新的tensorflow.keras.layers全新的模块。tf.keras.layers.Dense(units,activate,use_bais,input            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-03-05 23:53:44
                            
                                51阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            进行学习首先需要明确TensorFlow 是一个面向于深度学习算法的科学计算库,内部数据保存在张量(Tensor)对象上,所有的运算操作(Operation, OP)也都是基于张量对象进行。数据类型Tensorflow中的基本数据类型有三种,包括数值型、字符串型和布尔型。【数值型】又包括:(在 TensorFlow 中间,为了表达方便,一般把标量、向量、矩阵也统称为张量,不作区分,需要根据张量的维            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-14 22:16:44
                            
                                95阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            https://tf.wiki/ https://github.com/snowkylin/tensorflow-handbook  官网 https://tensorflow.google            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2021-07-16 15:19:55
                            
                                298阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            TensorFlow 零基础入门指南TensorFlow 是一个开发源代码软件库,它可以进行高性能的数值计算与分析,借助其灵活的架构,可以将其部署到多种平台(CPU、GPU、TPU)和设备(桌面设备、移动设备、集群)。TensorFlow 为机器学习和深度学习提供了很多强有力的支持,本篇文章小编为大家整理了很多 TensorFlow 的基础编程知识,非常适合初学者学习,一起来看看吧!1、 Tens            
                
         
            
            
            
            【Tensorflow】菜鸟学TensorFlow 2.0:TensorFlow2.0基础知识讲解1. 简介2. TensorFlow的特点3. TensorFlow的发展历程4. TensorFlow 2 的框架5. TensorFlow的开发流程6. TensorFlow为研究提供强大的实验工具7. 入门案例8. TensorFlow常见基本概念1. 计算图2. 张量3. 会话4. 运算操作            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-03-29 13:40:27
                            
                                81阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            节选自《简单粗暴 TensorFlow 2.0》,回复关键字“手册”获取合集 接下来我们将介绍 TensorFlow 中模型的部署与导出,本文介绍使用 SavedModel 完整导出模型。使用 SavedModel 完整导出模型在部署模型时,我们的第一步往往是将训练好的整个模型完整导出为一系列标准格式的文件,然后即可在不同的平台上部署模型文件。这时,TensorFlow 为我们提供了 SavedM            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-18 11:46:40
                            
                                29阅读