前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署TensorFlow 模型导出 使用 SavedModel 完整导出模型不仅包含参数的权值,还包含计算的流程(即计算图)tf.saved_model.save(model, "保存的目标文件夹名称")将模型导出为 SavedModelmodel = tf.saved_model.load("保存的目标文件夹名
在《基于TensorFlow Serving的YOLO模型部署》文章中有介绍tensorflow 1.x版本的模型如何利用TensorFlow Serving部署。本文接着上篇介绍tensorflow2.x版本的模型部署。工作原理架构图**核心概念 ****⑦ ServableHandler:**servable实例,用于处理client发送的请求servable的生命周期:● 一个Source插
机器学习问题不仅是一个科学问题,更是一个工程问题。大多数年轻的数据科学家都希望将大部分时间花在构建完美的机器学习模型上,但是企业不仅需要训练一个完美的模型,同时也需要将其部署,向用户提供便捷的服务。如下图所示,机器学习系统由机器学习代只包含一小部分,而在中间的小黑匣子周围,所需要的基础设施庞大而复杂。因此,在实际应用中,一个优秀的程序员不仅要学会构建完美的机器学习模型上,同时还需要将其部署向用户提
节选自《简单粗暴 TensorFlow 2.0》,回复关键字“手册”获取合集 接下来我们将介绍 TensorFlow 中模型的部署与导出,本文介绍使用 SavedModel 完整导出模型。使用 SavedModel 完整导出模型在部署模型时,我们的第一步往往是将训练好的整个模型完整导出为一系列标准格式的文件,然后即可在不同的平台上部署模型文件。这时,TensorFlow 为我们提供了 SavedM
基础import tensorflow as tf #定义tensorflow为tf
print(tf.__version__) #查看tensorflow版本
print(tf.test.is_gpu_available()) #查看tensorflow是否为GPU版本
#rank 0 张量
mammal = tf.Variable("Elephant", tf.string)
这里必须吐槽一下官网的教程示例,重复啰嗦就算了,还杂乱无章。个人整理建议流程。 走到这一步流程的同学,我相信,怎么样去训练模型和保存模型肯定已经不是什么问题了。关于模型保存: 平时训练用于保存模型 ,顾虑占用空间方面,都会选择 只保存 参数的方式。但是想要部署tensorflow-serving,让serving加载模型,则必须保存模型的所有数据,因此采用另外一种模型保存方式:tf.saved_m
在上一篇文章中,我们介绍了高效的数据流水线模块 tf.data 的流水线并行化加速。本篇文章我们将介绍 TensorFlow 另一个数据处理的利器——TFRecord。TFRecord :TensorFlow 数据集存储格式TFRecord 是 TensorFlow 中的数据集存储格式。当我们将数据集整理成 TFRecord 格式后,TensorFlow 就可以高效地读取和处理这些数据集,从而帮助
数据管道Dataset1.Dataset类相关操作1.1 Dataset类创建数据集1.2 Dataset类数据转换 知识树 1.Dataset类相关操作1.1 Dataset类创建数据集tf.data.Dataset 类创建数据集,对数据集实例化。 最常用的如:tf.data.Dataset.from_tensors() :创建Dataset对象, 合并输入并返回具有单个元素的数据集。tf.
Tensorflow2自定义Layers之__init__,build和call详解闲言碎语:--init--,build和call总结 参考官方链接:https://tensorflow.google.cn/tutorials/customization/custom_layers闲言碎语:如果想要自定义自己的Layer,那么使用tf.keras.Layer 来创建自己的类是必不可少的。但是笔
菜鸟学TensorFlow 2.0:TensorFlow2.0基础操作演示1. Tensor数据类型2. 创建Tensor3. Tensor索引和切片4. Tensor维度变换5. Broadcast6. 数学运算7. 手写数字识别流程8. TensorFlow实现神经网络参考资料 1. Tensor数据类型TensorFlow没有那么神秘,为了适应自动求导和GPU运算,它应运而生。为了契合nu
一、《深度学习之Tensorflow入门原理与进阶实战》1、第三章import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
trainx=np.linspace(-1,1,100)
trainy=2*trainx+np.random.randn(*trainx.shape)*0.3
#y=2x with
1. 前言:自从Google发布了TensorFlow2.0后,个人觉得与TensorFlow1相比是一个重大的突破,它不仅仅删除了许多旧的库并进行整合,还促进了Keras在搭建模型中的使用,通过高级API Keras让模型构建和部署变得简单。 我们在用TensorFlow2.0创建模型时,可以使用Keras函数API定义模型或者顺序API定义模型。本文将使用Keras函数API来定义CNN模型,
前言:本专栏在保证内容完整性的基础上,力求简洁,旨在让初学者能够更快地、高效地入门TensorFlow2 深度学习框架。 Github项目地址:https://github.com/Keyird/TensorFlow2-for-beginner经过前面的两篇文章,我们学会了如何去搭建简单和复杂的网络模型,网络搭建好意味着成功了一半,下面就是模型的装配、训练和评估环节! 文章目录一、模型的装配二、模
1 配置环境首先确保已经配置好tensorflow2和cuda、cudnn环境,不要下载错。配置的教程已经有很多,自行查阅2 安装APItf2 object detection 的安装参考此博客,TensorFlow 2 Object Detection API 物体检测教程 虽然这是linux系统下的,但是操作可以类比。简单地说只有三步 1.下载model-master并解压 其中tensorf
文章目录1. 基础知识1.1 张量生成1.2 常用函数1.3 实例: 鸢尾花分类2. 神经网络的优化过程(手工实现)2.1 预备知识2.2 神经网络复杂度2.3 激活函数2.4 损失函数2.5 缓解过拟合2.6 优化器3. 搭建网络(内置八股方式)3.1 基础八股3.2 搭建网络结构类4. 搭建网络(进阶)4.1 自制数据集4.2 数据增强4.3 断点续训4.4 参数提取4.5 acc曲线与los
主要将模型的搭建移植到keras,参照上一篇博客。新的差异主要如下:1. 之前我们可以初始化一个tensor,可以通过tf.nn,或者tf.layers模块,有些模块中出现了重复的片段,因此新的版本保留的前提下, 引入了一个新的tensorflow.keras.layers全新的模块。tf.keras.layers.Dense(units,activate,use_bais,input
对于我近几天使用TensorFlow2出的问题做个总结:1,是环境配置问题,我使用的是NVIDIA物理加速,就是GPU。TensorFlow-gpu 2.0.0,CUDA10.0,cudnn7.6.5。这仨之间的版本要一致,在TensorFlow官网查看对应CUDA的版本,再从NVIDIA官网下载对应CUDA的cudnn版本。2,CUDA目前最新版本是10.1,TensorFlow2应该是...
原创
2021-11-26 11:04:26
320阅读
进行学习首先需要明确TensorFlow 是一个面向于深度学习算法的科学计算库,内部数据保存在张量(Tensor)对象上,所有的运算操作(Operation, OP)也都是基于张量对象进行。数据类型Tensorflow中的基本数据类型有三种,包括数值型、字符串型和布尔型。【数值型】又包括:(在 TensorFlow 中间,为了表达方便,一般把标量、向量、矩阵也统称为张量,不作区分,需要根据张量的维
c++调用tensorflow2.x训练结果()注:本来想着用Tensorflow2.x训练模型,然后用C++去调用模型进行预测.后来计划有变,于是只完成了编译tensorflow生成.so文件.至于后续怎么用C++调用就没有去研究了.本文说明的是2.x版本的tensorflow的编译,其他版本的编译类似.1.x应该也是.只是编译需要的库的版本不一致.不过版本不一致在编译的过程中会有提示,按着提示
https://tf.wiki/ https://github.com/snowkylin/tensorflow-handbook 官网 https://tensorflow.google
原创
2021-07-16 15:19:55
259阅读