目录1 简介2 datasheet关键点介绍2.1 PWR3 资料说明4 例程运行4.1 选择CM7作为项目工程对象,并编译下载程序4.2 同理编译CM4项目对象4.3 编译结果说明参考链接1 简介        STM32H747/757 系列产品线拥有 Cortex-M7 内核(带双精度浮点单元,运行频率高达 480 MHz
转载 2024-07-10 22:47:09
217阅读
源:STM32F105 USB管脚Vbus的处理 对于STM32F105/107来说,为了监测USB的连接问题,程序默认是通过Vbus管脚进行检查的。但是Vbus管脚和UART1的TXD复用,导致我们在使用UART1发送数据时候,USB重启的问题。为了解决这个问题,本人查了大量的资料和咨询了不太靠谱
转载 2018-04-16 01:00:00
421阅读
2评论
基础知识这里以 KEIL 开发环境和 STM32F103RET6 为例。上电时单片机首先进入复位中断 Reset_Handler,即汇编文件的复位中断处理函数。 并且有一个中断向量表默认存在于 flash 地址开始处。 为什么说是默认呢?这是因为如果没有特殊要求的话很少会去改中断向量表。实际上这个中断向量表是可以更改的。但是在更改向量表之前必须在地址开始处建立一个向量表,因为在复位后,程序默认(硬
转载 2024-05-23 22:55:17
231阅读
1、串口通信简介通信接口的两种方式:并行通信 -传输原理:数据各个位同时传输。 -优点:速度快 -缺点:占用引脚资源多串行通信 -传输原理:数据按位顺序传输。 -优点:占用引脚资源少 -缺点:速度相对较慢目前使用最多的还是串行通信,即便速度相对较慢,所以下面都是讲解串行通信。①串口通信分类:串口通信按照数据传送方向,分为: (1)单工:数据传输只支持数据在一个方向上传输 (2)半双工:允许数据在两
转载 4月前
136阅读
STM32F4时钟配置库函数详解   在STM32中,所有的应用都是基于时钟,所以时钟的配置就尤为重要了,而不能仅仅只知道使用默认时钟。   STM32F4的时钟树如上图所示,HSE为外部接入的一个8M的时钟,然后再给PLL提供输入时钟,经过分频倍频后产生PLLCLK时钟,为SYSCLK提供基础时钟来源。配置的步骤:将RCC寄存器重新设置为默认值打开外部高速
转载 12小时前
317阅读
stm32之间直接传送浮点数的实现方法指针变换小端模式字节流发送端接收端 指针变换一个变量,如果长度大于一个字节,就可以拆分为多个字节;同时,也可由多个字节合成一个变量。数据传输过程一般就是采用发送端拆分,接收端合成。其中指针变换语句是核心:int x; x=*((int*)&x);其中x=指向该地址((强制指针类型转换)取地址); 该表达式可以将任意地址的几个字节“识别”为某一个类型
浮点数在内存中的表示 C语言:浮点数在内存中的表示 单精度浮点数: 1位符号位 8位阶码位 23位尾数 双精度浮点数: 1位符号位 11位阶码位 52位尾数 实数在内存中以规范化的浮点数存放,包括数符、阶码、尾数。数的精度取决于尾数的位数。比如32位机上float型为23位 double型为52位。 单精度float型存储在内存中的大小为4个字
转载 2024-09-02 13:27:43
129阅读
 前言一般进行远程监控时,2.4G无线通信是充当远程数据传输的一种方法。这时就需要在现场部分具备无线数据发送装置,而在上位机部分由于一般只有串口,所以将采集到的数据送到电脑里又要在上位机端设计一个数据接收的适配器。这里基于stm32分别设计了现场部分和适配器部分,这里只是基本通信功能实现的讲解,一些复杂的技术比如加密、可靠等要根据具体的应用来设计~总体说明这里采用stm32作为MCU,采
STM32F4时钟系统的知识在《STM32F4中文参考手册》第六章复位和时钟控制章节有非常详细的讲解,网上关于时钟系统的讲解也有很多,讲不出啥特色,时钟模块是芯片非常重要的组成部分,我们必然要提到时钟系统的知识。这些知识也不是什么原创,纯粹根据官方提供的中文参考手册和自己的应用心得来总结的,如有不合理之处望大家谅解。STM32F4时钟树概述众所周知,时钟系统是CPU的脉搏,就像人的心跳一样。所以时
常见问题1、当STM32的PA13/14/15引脚连接其他外设时,ST_link会出现internal grammar error 。2、但有时未连接上述引脚也会出现此情况,可以通过保持reset按钮按下后不动,在stm32开发环境Keil中点击download按钮,随后松开reset。3、在启动文件中有着stm32的分频设置,如果当前的外部晶振和内部设置的大小不匹配,则通讯时必然会出现乱码。4、
一、STM32F103知识总结-GPIO1.GPIO的工作方式:2.GPIO的相关函数:3.GPIO的初始化:4.GPIO设置:(1).GPIO置0,置1:(2).读GPIO电平/数据: 1.GPIO的工作方式:GPIO支持4种输入模式(浮空输入、上拉输入、下拉输入、模拟输入)和4种输出模式(开漏输出、开漏复用输出、推挽输出、推挽复用输出)。同时,GPIO还支持三种最大翻转速度(2MHz、10M
转载 2024-03-02 09:06:35
264阅读
FPU 简介FPU 即浮点运算单元(Float Point Unit)。浮点运算,对于定点 CPU(没有 FPU 的 CPU)来说必须要按照IEEE-754 标准的算法来完成运算,是相当耗费时间的。而对于有 FPU 的 CPU来说,浮点运算则只是几条指令的事情,速度相当快。STM32F4 属于 Cortex M4F 架构,带有 32 位单精度硬件 FPU,支持浮点指令集,相对于 Cortex M0
转载 2024-07-14 19:28:57
607阅读
GPIO是芯片和外界沟通的桥梁,GPIO有很多模式,不同的模式有不同的配置,应用于不同的场合。STM32F103系列的I/O引脚共有8种工作模式,输入模式有四种浮空输入上拉输入下拉输入模拟输入其中输出模式有四种:推挽输出开漏输出复用推挽输出复用开漏输出通过百问网对STM32F103GPIO部分的学习,这部分又深入了一些。浮空输入浮空输入是 STM32 复位之后 默认模式。浮空输入模式是相对于上拉或
转载 2024-06-06 16:45:32
143阅读
目录01、USART的特点02、USART简介2.1、数据传输模型2.2、帧结构2.3、波特率03、STM32的USART04、代码配置01、USART的特点USART是通用异步收发传输器(UniversalAsynchronousReceiver/Transmitter),通常称作UART,是一种异步收发传输器,是设备间进行异步通信的关键模块。UART负责处理数据总线和串行口之间的串/并、并/串
转载 6月前
95阅读
1.ADC采用值转换成具体的物理量值ADC采样值在寄存器中是16位整形数据,要转换成具体的电压量,则必须进行换算。例如12位的转换精度,满量程的二进制为0000 1111 1111 1111,对应十进制数为1095,对应的电压为3.3V。所以计算公式为            &n
转载 2024-06-13 17:41:59
472阅读
  在基础实验成功的基础上,对串口的调试方法进行实践。硬件代码顺利完成之后,对日后调试需要用到的printf重定义进行调试,固定在自己的库函数中。  b) 初始化函数定义:  void USART_Configuration(void); //定义串口初始化函数  c) 初始化函数调用:  void UART_Configuration(void); //串口初始化函数调用  初始化代码:  vo
目录前言一、什么是GPIO?二、STM32引脚的种类三、STM32GPIO的工作模式3.1输入模式(浮空、上拉、下拉、模拟)3.2输出模式(推挽、复用推挽、开漏、复用开漏)3.3重映射模式 四、库函数代码编写4.1 F1系列GPIO配置4.2 F4系列GPIO配置 五、GPIO控制函数总结前言最近参加比赛,需要将f1的代码移植为f4中,为了以后方便开发也为了给想学习stm32f
文章目录一.ADC简介二.ADC功能框图讲解1.电压输入范围2.输入通道3.转换顺序4.触发源5.转换时间6.数据寄存器7.中断8.电压转换三.初始化结构体四.单通道电压采集1.头文件2.引脚配置函数3.NVIC配置函数4.ADC配置函数5.中断函数6.主函数一.ADC简介STM32f103系列有3个ADC,精度为12位,每个ADC最多有16个外部通道。其中ADC1和ADC2都有16个外部通道,A
STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)在应用STM32的UART接口打印输出串口字符信息时,可以通过printf函数的重载和应用实现。但要打印输出浮点数据时,采用常规方式,对于Flash空间小的MCU,常常出现代码空间不够的报错,这里设计了替代的函数实现浮点转字符,从而解决空间不够报错的问题。STM32 printf()函数重载要使用printf函数通过串口
目录背景说在前面工作流程寄存器介绍ADC寄存器ADC->CR2DMA寄存器DMA2_Stream0 ->CR程序TIM3ADC1DMA开启顺序尾声 背景有一次我想在407上跑4096点的FFT,如果用软件触发ADC的方式(最简单)思路就是开定时器,在定时器中断中开触发,但是经过测试,实际效果的话,低速的情况下,准度还可以,但是速率一旦上去,如500K后,效果非常差。后来看了网上以及4
  • 1
  • 2
  • 3
  • 4
  • 5