Spring Security核心原理Spring Security是Spring生态系统的一个安全组件,而且和Spring MVC整合非常方便。Spring Security最基本的原理是基于J2EE的拦截器原理,拦截器会形成一个拦截器链,这是一种责任链设计模式。Spring Security使用实现的一些拦截器来对访问的url进行拦截,通过对缓存中的角色进行相应判定后决定是否能url访问权限。
转载 2024-03-19 14:06:42
14阅读
 近日,百度发布了用于花卉识别的移动端应用,这种基于全卷积注意力网络的细粒度识别方法在计算和准确度上都有非常强大的优势。在百度主任研发架构师陈凯和资深研发工程师胡翔宇的解释下,本文首先将介绍什么是细粒度识别,以及一般的细粒度识别方法,然后重点解析百度基于强化学习和全卷积注意力网络的细粒度识别模型。五一出游赏花,为女朋友解释解释细粒度识别也是极好的。     
常用的权限系统设计模式是以角色为核心的,即角色是具有相同权限的一类人员的集合:1.     一个角色可以有包含多个操作人员,一个操作人员也可以属于多个角色2.     一个角色可以具有多个功能的操作权限,一个功能也可以被多个角色所拥有。在登录时通过查询登录用户所属角色,即可得到个用户的所有功能集合,
转载 2024-08-14 09:30:52
74阅读
粗粒度与细粒度权限控制: 粗粒度权限管理,对资源类型的权限管理。资源类型比如:菜单、url连接、用户添加页面、用户信息、类方法、页面中按钮。。粗粒度权限管理比如:超级管理员可以访问户添加页面、用户信息等全部页面。部门管理员可以访问用户信息页面包括 页面中所有按钮。细粒度权限管理,对资源实例的权限管理。资源实例就资源类型的具体化,比如:用户id为001的修改连接,1110班的用户信息、行政部的员工
转载 2024-03-18 08:19:21
142阅读
有小伙伴表示微人事(https://github.com/lenve/vhr)的权限粒度不够细。不过松哥想说的是,技术都是相通的,明白了 vhr 中权限管理的原理,在此基础上就可以去细化权限管理粒度,细化过程和还是用的 vhr 中用的技术,只不过设计层面重新规划而已。当然今天我想说的并不是这个话题,主要是想和大家聊一聊 Spring Security 中权限管理粒度细化的问题。因为这个问题会涉及到
目录权限管理一共五张表:实体类:递归查询菜单递归删除菜单:权限管理引入依赖实体类第一步:登录,实现SpringSecrity的UserDetailsService接口第二步:登录成功,将权限信息存入redis中第三步:生成token返回第四步:将token放入请求头第五步:将token从请求头中拿出来,从token获取用户名,拿着用户名从redis获取权限列表springsecrity对toke
转载 2024-08-13 16:00:42
60阅读
粒度似乎是根据项目模块划分的细致程度区分的,一个项目模块(或子模块)分得越多,每个模块(或子模块)越小,负责的工作越细,就说粒度越细,否则为粗粒度。简而言之:粗粒度:模块的功能太过于集中。细粒度:将一个大的功能分成比较多的子模块。 我在一篇论文中读到这样的描述:通常情况下,软件缺陷预测模型的选择取决于预测目标,一般,粗粒度软件模块内的缺陷概率较大,故对于此类模块而言,预测其是否存在缺陷并
转载 2023-11-21 00:05:23
162阅读
论文提出了结合注意力卷积的二叉神经树进行弱监督的细粒度分类,在树结构的边上结合了注意力卷积操作,在每个节点使用路由函数来定义从根节点到叶子节点的计算路径,结合所有叶子节点的预测值进行最终的预测,论文的创意和效果来看都十分不错   论文: Attention Convolutional Binary Neural Tree for Fine-Grained Visual Categorization
计算机体系结构量化研究方法——指令集并行及其开发指令级并行指令级并行定义数据相关与冒险数据相关名称相关数据冒险控制相关揭示ILP的基本编译器技术基本流水线调度和循环展开循环展开与调度用高级分支预测降低分支成本相关分支预测竞赛预测器i7分支预测器用动态调度克服数据冒险动态调度:思想Tomasulo算法进行动态调度动态调度:示例和算法(这部分以后再看)Tomasulo算法基于硬件的推测以多发射和静态
Learning from fine-grained and long-tailed visual data迁移学习:大数据集—>小数据集 迁移任务的指标上升率:与数据的量级是对数的关系结果如下所示: 更多的预训练数据并非有用~在2018找出迁移任务的子集而非所有的,找出一定的相似度,利用预训练的子集即可~即衡量domain similarityimagenet’和inat有很强的偏差在迁移
 Learning to Navigate for Fine-grained ClassificationAbstract细粒度分类由于难以找到有区分度的特征而具有很大的挑战性。要找到这些微妙的特征来完全描述物体并不是一件简单的事。针对这种情况,我们提出了一种新的自我监督机制,在不需要限定bounding box/part标注的情况下,有效地定位信息区域。我们的模型被称为NTS-Net的
论文题目:SEMICON: A Learning-to-hash Solution for Large-scale Fine-grained Image Retrieval动机大多数现有的深度哈希方法仅支持通用目标检索,如汽车、飞机,这无法满足我们的实际需求。因此,最近关于深度哈希的工作已经开始关注细粒度图像检索,这需要准确检索图像的类别,例如不同种类的动植物等,而不仅是通用类别。创新点作者提出了
细粒度图像识别现在图像分类中一个难点,它的目标是在一个大类中识别子类,比如说在鸟的大类下识别鸟的种类,在车的大类下,识别车的型号。由于相同的子类中物体的动作姿态可能大不相同,不同的子类中物体可能又有着相同的动作姿态,这是识别的一大难点。不止对计算机,对普通人来说,细粒度图像识别的难度和挑战也很巨大。细粒度图像分类的关键点在寻找一些存在细微差别的局部区域(比如鸟类的喙、眼睛、爪子等),因此,现有的细
文章目录导读细粒度应用和分类2 细粒度的问题和挑战问题挑战3 数据集4 细粒度图像识别4.1 定位分类子网络4.2 端到端特征编码4.3 辅助信息5 细粒度图像检索6 细粒度图像生成7 细粒度图像分析相关的特定领域应用8 未来方向参考 导读图像分析是CV最重要的分支之一。在CV的各个研究领域中,细粒度图像分析(FGIA)是一个长期存在的基础性问题。旷视的研究人员魏秀参等人,将FGIA分为:细粒
医疗图像更多的是小样本学习,那么如何选择一个小样本数据集来针对各个算法进行比较,从而选择最好的算法,故整理了小样本学习相关的数据,也就是常用的细粒度分类数据简单的小样本分类的每个类别的图片或者语料大致在100到600之间,很少有单类样本超过1000的情况。相对于传统的深度学习来说,传统的深度学习是“小任务,大数据”,小样本学习是“小任务,小数据”,相对来说小样本学习的挑战性还是很大的,达到商用的地
文章目录1、SpringSecurity一般分为两个重点2、实际上用户存在一般就等于认证成功,认证成功之后就存在授权的问题3、一个用户可以有多个身份4、看图5、hasRole及hasAuthority的使用区别6、SpringSecurity常用的注解6.1 @EnableGlobalMethodSecurity(securedEnabled=true,prePostEnabled = true
从逻辑角度對象的粒度就是對象所容納的邏輯,粗粒度容納的邏輯多,細粒度容納的邏輯少,粒度一般用在权限管理(解决了粗粒度的问题,因为这部分具有通用性,而细粒度可以看成业务部分,因为其具有不确定性)从项目角度根据项目模块划分的细致程度区分的,一个项目模块(或子模块)分得越多,每个模块(或子模块)越小,负责的工作越细,就说粒度越细,否则为粗粒度举个例子:一个user类 其中有email属性 ,一个用户em
Spring Security是企业中使用广泛的认证授权框架,它也是spring家族中的一员,特别是它和spring boot结合开发非常的简单,能够极大的提高我们的生产力1  创建一个mavean工程:SpringSecurity022  pom中在上一个案例的基础上增加spring Security的依赖:<dependency>     <groupId>org.sp
原创 2020-02-23 06:56:20
757阅读
SpringSecurity
原创 2023-07-12 15:09:18
106阅读
从Oracle9i开始,就可以使用DBMS_FGA可以对指定的表的select语句进行审计但是在9i中只能对select语句进行审计,在10g中可以实现对DML的审计功能下面用DBMS_FGA来展示select语句的审计功能 ① 假定我们存在表t,包含记录为sys@ORCL> select * from hr.t; ID NAME ---------- --------------
原创 2013-10-17 09:55:58
792阅读
  • 1
  • 2
  • 3
  • 4
  • 5