一:戒骄戒躁,安心平气。 1:rdd.aggregateByKey()()与rdd…foldByKey()()区别 当分区内操作相同时,只是一个简化版。 2:求平均值 次数相加 数量相加:zero必须为map val newRdd: RDD[(String, (Int, Int))] = rdd.aggregateByKey((0, 0))(
(t, v) => (t._1 + v, t.
1. RDD概述RDD 是 Spark 的计算模型。RDD(Resilient Distributed Dataset)叫做弹性的分布式数据集合,是 Spark 中最基本的数据抽象,它代表一个不可变、只读的,被分区的数据集。操作 RDD 就像操作本地集合一样,有很多的方法可以调用,使用方便,而无需关心底层的调度细节。2. RDD的创建Spark Core为我们提供了三种创建RDD的方式,包括:使用
转载
2024-01-15 16:59:27
46阅读
RDD是什么?RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD。从编程的角度来看,RDD可以简单看成是一个数组。和普通数组的区别是,RDD中的数据是分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理。因此,Spark应用程序所做的无非是把需要处理的数据转换为RDD,然后对RDD进行一系列的变换和操作从而得到结果。本文为第一部分,将介绍Spark
转载
精选
2016-06-13 17:06:59
574阅读
RDD是什么? RDD是Spark中的抽象数据结构类型,不论什么数据在Spark中都被表示为RDD。从编程的角度来看,RDD能够简单看成是一个数组。和普通数组的差别是,RDD中的数据是分区存储的。这样不同分区的数据就能够分布在不同的机器上。同一时候能够被并行处理。因此,Spark应用程序所做的无非是
转载
2017-05-18 20:07:00
71阅读
2评论
rdd的reduce过程利用二元函数(如lambda x, y: x + y)对数据进行规约,首先将rdd的前两个元素应用于该二元函数,得到结果a,然后再
原创
2022-11-02 09:46:22
63阅读
目录shuffle为什么要有shuffleshuffle分类Shuffle WriteShuffle Readshuffle可能会面临的问题HashShuffle优化解决问题reduce分区数决定因素SortShuffle shuffle为什么要有shuffleshuffle:为了让相同的key进入同一个reduce 每一个key对应的value不一定都在同一个分区中,也未必都在同一个节点上,而
转载
2023-09-07 17:00:25
219阅读
1基本概念1.1什么是Spark Spark是一种计算框架,是与mapreduce不一样的计算框架。他与Hadoopmapreduce相比具有以下优势:1) Spark通过将中间结果缓存在内存,而不是磁盘,因此很适合于多阶段的作业,如需多次迭代的机器学习。而mapreduce则将中间结果每次都
转载
2023-12-13 20:55:08
39阅读
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、基本概念1.RDD的生成2.RDD的存储3.Dependency4.Transformation和Action4.1 Transformation操作可以分为如下几种类型:4.1.1 视RDD的元素为简单元素。4.1.2 视RDD的元素为Key-Value对:4.2 Action操作可以分为如下几种:5.shuffl
转载
2023-11-14 09:26:59
105阅读
窄依赖所谓窄依赖就是说子RDD中的每个分区(partition)只依赖于父RDD中有限个数的partition。在API中解释如下: 窄依赖在代码中有两种具体实现,一种是一对一的依赖:OneToOneDependency,从其getparent方法中不难看出,子RDD只依赖于父 RDD相同ID的Partition。另外一种是范围的依赖,RangeDependency,它仅仅被org.apache
转载
2023-06-11 15:26:05
137阅读
1.1 什么是Spark SQL Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用 它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所有S
转载
2023-07-11 20:00:57
108阅读
是什么 SparkSql 是Spark提供的 高级模块,用于处理结构化数据,开发人员可以使用HiveQL 和SQL语言 实现基于RDD的大数据分析, 底层基于RDD进行操作,是一种特殊的RDD,DataFrameRDD类型 1. 将SQL查询与Spark无缝混合,可以使用SQL或者Da
转载
2023-08-10 20:44:14
114阅读
一、Spark包括什么spark的核心是Spark Core,其中上面的Spark Sql对接的是Hive等结构化查询,Spark Streaming是对接的流式计算,后面的那两个也是主要用在科学任务中,但是他们的基础都是spark core,而Spark core的核心就是RDD操作,RDD的操作重要的就是算子,也就是说,掌握了算子基本上就掌握了spark的基础。二、RDD1、是什么? 
Spark RDD转换操作RDD,即弹性分布式数据集,全称为Resilient Distributed Dataset,是一个容错的,并行的数据结构,可以让用户显式地 将数据存储到磁盘和内存中,并能控制数据的分区。同时,RDD还提供了一组非常丰富的操作来操作这些数据,如:map,flatMap,filter等转换操作,以及SaveAsTextFile,conutByKey等行动操作。 本
转载
2024-01-08 14:38:08
26阅读
1、SPARK简介 (1)一种计算框架.spark其实只是一个计算引擎,而hadoop包含了存储和计算。也就是说,spark最多也就能替换掉hadoop的计算部分(mapreduce)。可从事包含流计算机器学习等功能,和hadoop相互兼容(可以从HDFS读取数据)。 重要特征: 在mapreduce会反复使用磁盘进行数据读取的迭代,spark则将所需要的数据先加载进内存。所以spark速度
转载
2024-01-12 11:21:24
39阅读
弹性分布式数据集(RDD)不仅仅是一组不可变的JVM(Java虚拟机) 对象的分布集,可以让你执行高速运算,而且是Apark Spark的核心。顾名思义,该数据集是分布式的。基于某个关键字,该数据集被划分成多块,同时分发到执行结点。这样做可以使得此类数据集能够执行高速执行运算。另外,RDD将跟踪(记入日志)应用于每个块的所有转换,以加快计算速度,并在发生错误和部分数据丢失时提供回退。在这种情况...
原创
2022-03-15 14:06:34
172阅读
RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。
原创
2023-06-10 00:35:02
90阅读
原因1:优秀的数据模型和丰富的计算抽象Spark出现之前,已经有了非常成熟的计算系统MapReduce,并提供高级API(map/reduce),在集群中运行计算,提供容错,从而实现分布式计算。虽然MapReduce提供了数据访问和计算的抽象,但是数据的重用只是简单地将中间数据写入一个稳定的文件系统(比如HDFS),所以会产生数据复制备份、磁盘I/O和数据序列化,所以在多个计算中遇到需要重用中间结
弹性分布式数据集(RDD)不仅仅是一组不可变的JVM(Java虚拟机) 对象的分布集,可以让你执行高速运算,而且是Apark Spark的核心。顾名思义,该数据集是分布式的。基于某个关键字,该数据集被划分成多块,同时分发到执行结点。这样做可以使得此类数据集能够执行高速执行运算。另外,RDD将跟踪(记入日志)应用于每个块的所有转换,以加快计算速度,并在发生错误和部分数据丢失时提供回退。在这种情况...
原创
2021-08-04 13:56:33
192阅读
RDD是“Resilient Distributed Dataset”的缩写,从全称就可以了解到RDD的一些典型特性。Resilient(弹性):RDD之间会形成有向无,数据库等。
原创
2024-04-30 14:59:51
316阅读
spark常用RDD操作,操作包括两种类型,即转换(Transformation)操作和行动(Action)操作一、转换操作(Transformation)1、filter(func)筛选出满足函数func的元素,并返回一个新的数据集 例:val lines=sc.textFile("file:///usr/local/spark/mycode/rdd/word.txt")
val linesWi
转载
2023-06-19 05:51:18
0阅读