pythonBP神经网络实现一、概念理解开始之前首先了解一下BP神经网络,BP的英文是back propagationd的意思,它是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法。它的基本思想是梯度下降法,利用梯度搜索技术,期望使网络的实际输出值和期望输出值的误差和均方差为最小。基本BP算法包括信号的前向传播和误差的反向传播两个过程。正向传播过程:输入信号——通过隐含层
1.项目背景BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一。BP神经网络具有任意复杂的模式分类能力和优良的多维函数映射能力,解决了简单感知器不能解决的异或(Exclusive OR,XOR)和一些其他问题。从结构上讲,BP网络具有输入层、隐
Python 多层BP神经网络的实现及应用神经网络前向传播(Forward propagation)反向传播(Error Back Propagation)代码实现最终结果 神经网络在深度学习中,其中一种网络架构是前向传播——反向传播,本文就讲解一下反向传播算法(Error Back Propagation),并在不调用深度学习库的情况下实现BP算法的三角函数拟合。下面的图片是一个简单的多层神经
引言本文基于BP神经网络对变压器的故障进行分类和诊断。变压器根据五种特征气体对应四种故障类型(高能放电、低能放电、过热和正常)。对已知类型的训练样本进行计算,构造BP神经网络,然后对测试样本进行分类。该方法的正确率达88%。 变压器是电力系统中分布广泛、造价昂贵、结构复杂的电气设备,担负着电能传送和电压转换的重任,其正常运行直接影响了整个电力系统的安全性和稳定性。对油浸式变压器来说,随着运行的持续
在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上。训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的列向量(20*20 pixel image)。用 X 矩阵表示整个训练集,则 X 是一个 5000*400 (5000行 400列)的矩阵另
# 使用遗传算法优化BP神经网络的指南 在机器学习和优化领域,遗传算法(Genetic Algorithm, GA)和BP神经网络(Backpropagation Neural Network, BP NN)都是非常重要的工具。这篇文章将指导你如何使用遗传算法来优化BP神经网络。我们将通过建立一个简单的流程,逐步带你实现这个目标。 ## 流程概述 在开始之前,我们先给出一个流程表,梳理出实现
原创 9月前
608阅读
该实现为《数据挖掘》课程的一次作业。数据在http://www.kaggle.com/网站上,所以数据为CSV格式。但BP神经网络算法为最一般的实现,所以有参考价值。close all %关闭打开的文件 clear %清除内存中的数据 echo on %显示执行的每一条命令 clc %清除命令行窗口 pause %敲任意键开始 %定义训练样本 %P为
from numpy import exp,array,random,dot #import random class NeuralNetwork(object): def __init__(self): #指定随机数发生器种子,保证每次获得相同结果的随机数 random.seed(1) #对含有3输入1输出的单个神经元建模
转载 2023-05-26 11:06:39
184阅读
实现"Android bp使用prebuiltModulePath"的步骤: **1. 确定项目目录结构** 在开始之前,我们需要确保项目的目录结构符合要求。Android bp使用prebuiltModulePath需要使用以下目录结构: ``` project/ ├── app/ │ ├── src/ │ │ ├── main/ │ │ │
原创 2024-01-11 06:17:06
367阅读
BP神经网络实战前段时间看了BP神经网络,并进行回归预测,下面从三种方法进行阐述。方法一、直接使用波斯顿房价预测案例进行简单修改,话不多说,源码如下:(代码备注很清晰,一看既懂)#读取数据 from sklearn.metrics import mean_squared_error #均方误差 from sklearn.metrics import mean_absolute_error #平方绝
            def sigmoid(inX): return 1.0/(1+exp(-inX)) '''标准bp算法每次更新都只针对单个样例,参数更新得很频繁sdataSet 训练数据集labels 训练数据集对应的标签标签采用one-hot编码(
转载 2024-02-09 11:39:39
62阅读
学习日记(2.18) BP神经网络BP神经网络简介BP(back propagation) 神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。 BP算法(Back Propagation algorithm, 反向传播算法)
转载 2024-03-12 22:11:15
45阅读
前言前段时间在一个朋友那么得到的灵感,想到可以用音乐播放页面作为一张海报图片。其实接下来要讲的和海报还是有差距的,而具体实现也只是简单的图片粘贴,但是在效果上还是不错的。效果图如下,希望大家喜欢:左边是原图,右边是需要添加到中间的图,也是图的主角。其实如果直接用ps实现上面的图是非常简单的,反倒是用代码实现有点曲折,不过实现过程还是非常有趣的,希望这篇博客可以可以让你学到知识。用Pillow创建圆
作者:解琛 二、使用 BP 神经网络拟合多输入多输出曲线 二、使用 BP 神经网络拟合多输入多输出曲线列表中的数据是某地区20年公路运量数据,其中属性 人口数量、机动车数量 和 公路面积 作为输入,属性 公路客运量 和 公路货运量 作为输出。请用神经网络拟合此多输入多输出曲线。年份人口数量/万人机动车数量/万辆公路面积/万平米公路客运量/万人公路货运量/万吨199020.550.60.09512
用pytorch跟tensorflow实现神经网络固然爽。但是想要深入学习神经网络,光学会调包是不够的,还是得亲
?1 概述在大数据、人工智能的背景下,神经网络算法被广泛的应用和普及,风险预测问题成为人们关注的热点,BP神经网络算法是用于解决预测问题效果最好的算法之一,但传统的BP神经网络算法在隐含层权值选择过程具有一定的局限性,会影响算法预测的效率和精度。针对这种情况,提出了改进的BP神经网络算法,利用遗传算法和BP神经网络算法相结合,提升算法的预测效率和预测精度。首先,分析传统BP神经网络算法流程及不足;
目录stata自带示例数据集1.数据描述2. 标签重命名3.截面数据统计4.面板数据定义5.面板数据统计6.分组统计7.连续值自动划分等级8.计算分位数9.字符串截取与转换成数字10.字符串变量设置类别编码11. 自动生成均值,中位数等12. 删除变量或样本13. 删除指定变量中含有缺失值的样本14.缩尾处理 15.中介效应16.长面板与宽面板互转 17.多列合并 1
BP算法推导BP算法(BackPropagation)反向传播算法又叫误差逆传播算法(error BackPropagation),它是迄今最成功的神经网络学习算法。 现在从神经网络训练的角度推导BP算法。 给定训练集D={(x1,y1),(x2,y2),⋯,(xm,ym)},xi∈Rd,yi∈Rl D =
如何建立bp神经网络预测 模型。建立BP神经网络预测模型,可按下列步骤进行:1、提供原始数据2、训练数据预测数据提取及归一化3、BP网络训练4、BP网络预测5、结果分析现用一个实际的例子,来预测2015年和2016年某地区的人口数。已知2009年——2014年某地区人口数分别为3583、4150、5062、4628、5270、5340万人执行BP_main程序,得到[2015, 5128
# Python BP库实现教程 ## 1. 引言 在机器学习领域中,BP(Back Propagation)神经网络是一种常用的人工神经网络模型。Python提供了许多优秀的BP库,使得实现BP神经网络变得简单高效。本文将教你如何使用Python BP库来构建一个BP神经网络模型。 ## 2. 整体流程 下面的表格展示了整个BP神经网络的实现流程。我们将使用一些常见的库来辅助实现,包括num
原创 2024-02-15 03:34:47
73阅读
  • 1
  • 2
  • 3
  • 4
  • 5