目录stata自带示例数据集1.数据描述2. 标签重命名3.截面数据统计4.面板数据定义5.面板数据统计6.分组统计7.连续值自动划分等级8.计算分位数9.字符串截取与转换成数字10.字符串变量设置类别编码11. 自动生成均值,中位数等12. 删除变量或样本13. 删除指定变量中含有缺失值的样本14.缩尾处理 15.中介效应16.长面板与宽面板互转 17.多列合并 1
今天来分享一下T检验python实现方法。01先来上一波概念。1.单样本t检验,又称单样本均数t检验,适用于来自正态分布的某个样本均数与已知总体均数的比较,其比较目的是检验样本均数所代表的总体均数是否与已知总体均数有差别。已知总体均数一般为标准值、理论值或经大量观察得到的较稳定的参数。2.两独立样本均数比较的t检验,又称成组t检验,适用于完全随机设计下两样本均数的比较,其目的是检验两样本所来自总
为了解基因组存在T-DNA插入时,即基因组构成为AC而样本基因组为ABC的情况得到的测序结果在序列比对的时候的可能情况,因此需要先要使用模拟数据进行探索。第一步:构建参考序列和实际序列。这一部分会用到samtools,emboss和entrez-direct, 都可以通过conda安装用efecth下载参考基因组mkdir -p refs efetch -db=nuccore -format=fa
第七章 异方差7.1 异方差的后果在存在异方差的情况下:OLS估计量依然是无偏的、一致且渐近正态;OLS估计量方差改变,因此使用普通标准误的t检验、F检验失效;高斯-马尔可夫定理不再成立OLS不再是最佳线性无偏估计。大样本OLS理论是否已经假设了同方差?需要区分无条件方差与条件方差。7.2 异方差的例子7.3 异方差的检验画残差图最直观的方法,但是不严格BP检验使用LM统计量进行LM检验B和P最初
介绍这篇论文主要介绍一种基于BP(Beilef propagation)算法在3维空间-时间马尔可夫随机场的运用来进行运动目标检测。 对于目标检测,有两种主要的方法即提取背景和帧差法,提取背景的方法顾名思义就是需要将前景与背景分开来达到检测运动目标的目的, 但是需要大量移动相机位置来提取不同的背景;帧差法即通过前后帧的作差来检测运动目标,这个方法由于作差将前后帧不变的信息包括背景信息也删除了,因此
转载 2024-04-22 19:12:11
29阅读
一、BP神经网络概述BP网络是一类多层的前馈神经网络。它的名字源于在网络训练的过程中,调整网络的权值的算法是误差的反向传播的学习算法,即为BP学习算法。BP算法是 Rumelhart等人在1986年提出来的。由于它的结构简单,可调整的参数多,训练算法也多,而且可操作性好,BP神经网络获得了非常广泛的应用。据统计,有80%~90%的神经网络模型都是采用了BP网络或者是它的变形。BP网络是前向网络的核
目录:(摘自百度百科)一、基本概念二、类型:1、单因素方差分析2、双因素方差分析3、协方差分析一、基本概念方差分析又称“变异数分析”或“F检验”,用于两个及两个以上样本均数差别的显著性检验。 方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个: (1) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb
我们以一个实验来说明整个流程,包括了数据生成,网络构建,网络训练,预测和最终验证。实验的要求如下:一、实验计划1.数据生成采用np.random.multivariate_normal (mean, cov, size=None, check_valid=None, tol=None)方法,它用于生成多元正态分布矩阵。其中mean和cov为必要的传参而size,check_valid以及tol为可
1. 三维卷积:2. 最大池化:缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性。3. 卷积层的优势(1)参数共享:每个特征检测器以及输出都可以在输入图片的不同区域中使用同样的参数,以便提取垂直边缘或其它特征。它不仅适用于边缘特征这样的低阶特征,同样适用于高阶特征,例如提取脸上的眼睛,猫或者其他特征对象。(2)稀疏连接:输出单元仅与几个输入特征相连接,而其它像素值都不会对输出产生任影响。4
一、实验目的通过学习BP神经网络技术,对手写数字进行识别,基于结构的识别法及模板匹配法来提高识别率。二、实验器材PC机     matlab软件三、实验内容按照BP神经网络设计方法选用两层BP网络,构造训练样本集,并构成训练所需的输入矢量和目标向量,通过画图工具,获得数字原始图像,截取图像像素为0的最大矩形区域,经过集合变换,变成16*16的二值图像,再进行
随机误差项一般包括的因素是:未知的影响因素,残缺数据,数据观察误差,模型设定误差及变量内在随机性。 如果说方差是用来衡量一个样本中,样本值的偏离程度的话,协方差就是用来衡量两个样本之间的相关性有多少,也就是一个样本的值的偏离程度,会对另外一个样本的值偏离产生多大的影响,协方差是可以用来计算相关系数的,相关系数P=Cov(a.b)/Sa*Sb,Cov(a.b)是协方差,Sa Sb 分别是样本标
White检验是一种用于检验线性回归模型中误差项同方差的统计方法。这种检验方法可以在各种数据分析场景下被广泛应用,如金融分析、市场研究和工程学。然而,如何在Python中实现White检验,则是许多数据科学家在数据建模过程中的一个常见挑战。本文将详细记录解决“White检验检验 python”问题的过程,包括背景描述、技术原理、架构解析、源码分析、性能优化和案例分析。 ### 背景描述 在20
原创 6月前
199阅读
t 检验是一种统计技术,可以告诉人们两组数据之间的差异有多显著。它通过将信号量(通过样本或总体平均值之间的差异测量)与这些样本中的噪声量(或变化)进行比较来实现。有许多有用的文章会告诉你什么是 t 检验以及它是如何工作的,但没有太多材料讨论 t 检验的不同变体以及何时使用它们。本文将介绍 t 检验的 3 种变体以及何时使用它们以及如何在 Python 中运行它们。单样本 t 检验单样本 t 检验
导入相关库:导入数据为了开始执行离群值测试,我们将导入一些每10分钟采样的平均风速数据说明:在任何数据集中, outlier都是与其他数据点不一致的基准点。 如果从特定分布采样的数据具有高概率,则异常值将不属于该分布。 如果特定点是异常值,则有各种测试用于测试,这是通过常态测试中使用的相同的空假设测试来完成的。Q测试Dixon的Q-Test用于帮助确定是否有证据表明某个点是一维数据集的异常值。 假
转载 2023-07-27 12:11:56
127阅读
因为写代码的缘故,经常会去看Stack Overflow网站,国内非程序员同学可能对这个网站比较陌生,但在英文世界里,这可是最大的IT技术问答网站,有最权威、最及时、最丰富的技术问题Q&A。 所谓“编程不识Stack Overflow,纵称程序员也枉然”,Stack Overflow也算是国内程序员最常逛的网站之一,为什么这么受欢迎呢?我觉得有5点:1、Stack Overflow是英文
图片工具检查图片是否损坏日常工作中,时常会需要用到图片,有时候图片在下载、解压过程中会损坏,而如果一张一张点击来检查就太不Cool了,因此我想大家都需要一个检查脚本;测试图片,0.jpg是正常的,broke.jpg是手动删掉一点内容后异常的:脚本运行结果:代码如下:# 从本地判断图片是否损坏 def is_valid_image(path): ''' 检查文件是否损坏 ''' try: bVali
我们前面讲了异方差,也讲了怎么用图示法来判断是否有异方差,这一篇来讲讲怎么用统计的方法来判断有没有异方差。关于检验异方差的统计方法有很多,我们这一节只讲比较普遍且比较常用的white test(怀特检验)。假设现在我们做了如下的回归方程:如果要用怀特检验检验上述方程有没有异方差,主要分以下几个步骤:1.step1:对方程进行普通的ols估计,可以得到方程的残差ui。2.step2:以第一步估计估计
图 | 源网络 文 | 5号程序员 数据假设检验是数理统计学中根据一定假设条件由样本推断总体的一种方法。那我们啥时候会用到假设检验呢?大多数情况下,我们无法分辨事物的真伪或者某种说法是否正确,这时就需要进行假设,然后对我们的假设进行检验。比如,我们想知道被告人是不是有罪,就可以通过假设检验进行判断。基本思路包括4步逻辑:问题是什么?→证据是什么?→
实验七、缺陷检测一、 题目描述 对下面的图片进行缺陷检测操作,请详细地记录每一步操作的步骤。 第一站图片是标准样品,后面几张图中有几个样品有瑕疵,需要你通过计算在图片上显示出哪张是合格,哪张不合格。 **1.思路** Python-Opencv中用compareHist函数进行直方图比较进而对比图片图像直方图图像直方图是反映一个图
文章目录1. 统计包与数据挖掘1.1 数据分析流1.2 数据统计包2. 方差分析2.1 T检验(单因素方差分析)2.2 T检验 (多因素方差分析)2.3 方差分析——多因素和交互 1. 统计包与数据挖掘1.1 数据分析流进行数据分析应该遵循一个什么样的步骤1.2 数据统计包numpy 1.pandas提供basestat功能:单变量、双变量数据分析,包括描述统计(集中和离散、图形、交叉表)、相关
  • 1
  • 2
  • 3
  • 4
  • 5