本文为美国海军研究生学院(作者:Jason E. Kutsurelis)的硕士论文,共82页。本文研究并分析了神经网路作为预测工具的使用方法。具体来说,测试了神经网络预测股票市场指数未来趋势的能力,并与传统的预测方法——多元线性回归分析法进行了比较。最后,利用条件概率计算模型预测正确的概率。本研究在简要探讨神经网络理论的同时,确定了将神经网络作为个人投资者预测工具的可行性和实用性。这项研究建立在
转载 2023-05-24 14:16:00
255阅读
        本文主要总结神经网络图文检索部分语义对齐模型的代码,主要用于记录笔者的学习过程,如有不准确之处,欢迎各路大神指出!谢谢!1.图像分类神经网络def predict(model, img): with torch.no_grad(): out = model(img)
文章目录一、NNLM简单介绍二、NNLM词语预测代码1. 导入包2. 文本数据处理3. 自定义mini-batch迭代器 4. 定义NNLM模型1. 定义模型结构2. NNLM参数设置5. 输入数据并完成训练 6. 预测一、NNLM简单介绍 NNLM:Neural Network Language Model,神经网络语言模型。源自Bengio等人于200
©原创作者 | 小欣原标题:异步传播注意力图神经网络(APAN)简介,一种图神经网络时序模型在工业化场景上的实践探索01 图神经网络在工业场景上的瓶颈传统的图模型通常执行两个串行操作:首先是图查询,然后是模型推理,由于查询 k-hop 邻居的时间复杂度比较大,很多图算法在时序神经网络模型中无法执行快速推理,因此,极大地限制了图算法的工业化推广。为了解决这个问题,来自上海交通大学的团队和蚂
         本文主要用于积累自己学习过程中搭建神经网络的常见代码,如有不准确之处,欢迎各路大神指出!谢谢!训练网络optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9) criterion = nn.NLLLoss()optim.SGD ()用于优化神经网络,使得
用BP神经网络做数据预测有两种形式:1.根据自身已有的数据预测未来的数据。 比如:根据2000-2012年已知GDP的值预测2013年GDP的值。求解:用2000,2001,2002的值作为输入,2003作为输出;然后以此类推,2001,2002,2003作为输入,2004作为输出;  ......2009,2010,2011作为输入,2012作为输出。  预测:根据2010,2011,
转载 2023-05-24 15:33:58
208阅读
人工神经网络在模块keras中,实现步骤如下:#bp人工神经网络的实现#1、读取数据#2、导入对应模块,keras.models  Sequential(建立模型)  |keras.layers.core Dense(建立层)  Activation#3、Sequential建立模型#4、Dense建立层#5、Activation激活函数#6、compile模型编译#
前沿:先学习本篇文章之前,建议大家先学习我编写的上一篇“使用Python从头实现一个神经网络”,再来学习学习本篇使用神经网络进行房价预测。介绍:本次使用神经网络进行房价的预测,利用数据样本学习,得到相关因素预测房价。数据介绍:数据来源:使用爬虫工具爬取广州某小区的售房信息。爬取到的数据如下:选取变量共有380条数据,七项指标,选取其中五项指标,分别为总价,面积、房间数量、客厅数量、建造年份。选取房
from sklearn.neural_network import MLPRegressorhidden_layer_sizes :隐含层尺寸,例如hidden_layer_size=(30,20,20) activation:激活函数,常用"identity",“logistic”,“tanh”,“relu” solver:模型优化的方法 ,常用三种:"lbfgs"牛顿法,适合小样本、 “sg
转载 2023-05-24 14:57:27
241阅读
论文标题:GRAND+: Scalable Graph Random Neural Networks论文来源:https://arxiv.org/pdf/2203.06389.pdf论文介绍近期的工作认为图随机神经网络具有很好的性能,但是难以用在大型图上。本文提出了一个广义的前推算法,预先计算传播矩阵,并使用它以小批量方式执行图数据扩充,最后使用一个自信感知的一致性损失来优化模型。论文方法令&nb
2019论文6 DyREP: Learning Representation over Dynamic GraphsMotivationModel时间点过程嵌入表示学习论文7 Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow ForecastingMotivationModelSpatia
三层结构模拟大脑神经活动 在实际应用中,80%~90%的人工神经网络模型是采用误差反传算法或其变化形式的网络模型。 隐藏层:信息处理过程 输入输出层:just数据的入出 权值概念先知设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定;神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别;结构图里的关键不是圆圈(代表“神经元”),而是连接线(
bp的算法的推导:神经网络代码如下:import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split iris = datasets.load_iris() train_data, test_data, train_label, test_label = tra
转载 2023-07-04 11:45:27
250阅读
1评论
LeNet5股票预测预测股票走势是上涨还是下跌1.LeNet5股票预测2.数据预处理(1)归一化(2)滑动平均(3)加窗取股票样本(4)分割数据集(5)OneHot编码3.设计LeNet5网络结构(1)神经网络结构设计(2)模型训练(3)模型评价(4)可能遇到问题4.完整代码5.数据集下载链接 1.LeNet5股票预测实现股票长期预测: 数据集包括:开盘价,最高价,最低价,收盘价,交易量 基本
本文主要为了解决如何用BP神经网络由历史的目标数据与因素数据去预测未来的目标数据。Bp神经网络的具体算法步骤与代码网络上已经有很多大佬写过了,本文提供了将其应用于预测的方法。(附简单直接可使用代码) 开始我也在思考,简答来说bp神经网络从本质上来说就是个拟合的工具,用n种因素数据与训练好的权值w去以最优的非线性方式去拟合预测的目标数据。常规bp神经网络只能做到对目标数据的拟合而无法预测出未来数据
一、源码地址及使用说明如果你是个非常暴躁的人,不想听任何废话,那么点下面的链接。https://github.com/KANADEM/Data_Prediction下载完成之后直接点击bat文件就可以看到你想要的结果。如果你稍微有一些耐心的话,下面红框中的文件夹可以不需要下载,直接利用PyCharm打开项目即可,但相关的包需要你自己安装,或者你可以一并下载,将工程的Interpreter指向这个文
 一、前言分类预测是分为二分类和多分类,多分类是标签类别为3个及3个以上,当然在代码实现上,多分类模型同样适用于二分类问题。此外,分类问题其实也是回归问题的延伸,先通过回归预测出具体数值,再通过预先设定的阈值来判别预测的类别。举例:如果类别分为0和1,阈值设置为0.5,如果通过训练,回归预测的数值0.2小于0.5,就划分为0类,如果预测出来的数是0.8,那么就划分为1类。BP神经网络进行
学了这么久机器学习和深度学习,应该来个小项目练练手。 于是选择了最经典的数据集MNIST来锻炼下自己卷积神经网络的熟练度。我采用了比较简单的结构,没有用强大的GooLeNet(…实则是电脑带不动),两个卷积层加一个最大池化层,然后加一个大小为64的全连接层,最后是softmax输出。其实这个结构也是看了n遍了,这次来手写一下代码,顺便熟悉熟悉tensorflow的函数。 话不多说,上代码(pyth
# BP神经网络预测 ## 什么是BP神经网络 BP神经网络(Back Propagation Neural Network)是一种常见的人工神经网络,被广泛应用于模式识别、数据挖掘、预测分析等领域。它是一种具有反馈机制的多层前馈神经网络,能够通过不断的迭代和学习来优化网络的权值和偏置,以实现对输入数据的预测。 BP神经网络由输入层、隐藏层和输出层构成。每个神经元都有一个激活函数,用于将输入
原创 2023-07-24 12:15:30
184阅读
1.简介人工神经网络是模仿脑细胞结构和功能、脑神经结构以及思维处理问题等脑功能的信息处系统,它从模仿人脑智能的角度出发,探寻新的信息表示、存储和处理方式,这种神经网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的,它采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结有针对性化信息方面的缺陷,具有自适应、自组织和实
  • 1
  • 2
  • 3
  • 4
  • 5