本文旨在利用Tensorflow训练一个中文评论情感二分类的循环神经网络,由于分词处理是以字为最小单位的,所以该模型同时也是char-based NLP模型。研究表明,基于字的NLP模型的性能要比基于词的NLP模型好。原因有如下几点:基于词模型的第一个任务就是对句子分词,不同分词工具的分词结果往往不同词是由字组成的,所以词的范围要比字的范围广得多。正因如此,基于词产生的特征向量更为稀疏
# 自然语言处理中的分词RNN模型 自然语言处理(NLP)是机器学习的一个重要分支,致力于实现人与计算机之间的自然语言交流。在NLP的多个任务中,分词是处理文本的基础步骤之一,而循环神经网络(RNN)则是一种有效的模型,能够捕获文本数据中的上下文信息。本文将深入探讨分词的概念及其在RNN中的应用,并通过代码示例帮助读者理解。 ## 什么是分词分词是自然语言处理中的一种技术,特别是在处理
原创 2024-10-23 06:26:30
48阅读
 分三步1、先分词2、做BEMS标注,同时做词性标注3、训练模型 1、对语料进行分词拿到测试部的语料或者其他渠道的语料,先对语料进行分词,我刚刚开始是用NS分词的,等CRF模型训练好后,可以直接用CRF进行分词,分完词后要人工核对分词结果,将分词分得不正确的地方修改好2、标注词性,标注BEMSBEMS所说是中科院的提出一种标注,也有说BEIS的,hanlp用的是BEMSB:开始
规则分词规则分词是一种机械分词方法,主要通过维护词典,在切分语句时将语句的每个字符串和词表中的词逐一匹配找到则切分,找不到则不切分。 具体包括正向最大匹配法、逆向最大匹配法和双向最大匹配法正向最大匹配算法描述①从左向右取待切分汉语句的m 个字符作为匹配字段, m 为机器词典中最长词条的 字符数。 ②查找机器词典并进行匹配。 若匹配成功, 则将这个匹配字段作为一个词切分出来。 若匹配不成功,则将这个
深度学习实战篇-基于RNN的中文分词探索近年来,深度学习在人工智能的多个领域取得了显著成绩。微软使用的152层深度神经网络在ImageNet的比赛上斩获多项第一,同时在图像识别中超过了人类的识别水平。百度在中文语音识别上取得了97%的准确率,已经超过了人类的识别能力。随着深度学习在越来越多的领域中取得了突破性进展,自然语言处理这一人工智能的重要领域吸引了大批的研究者的注意力。最近谷歌发布了基于深度
读 Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation论文的主要贡献提出了一个新的神经网络模型叫做 RNN编码-解码器 ,该模型包含两个RNN,分别位于编码器和解码器中,编码器中的RNN负责将变长的输入序列映射到一个固定长度的向量中,解码器中的RNN则负责将向量映
转载 2024-02-20 21:12:12
93阅读
递归神经网络是一种主流的深度学习模型,它可以用神经网络模型来处理序列化的数据,比如文本、音频和视频数据。它能把一个序列浓缩为抽象的理解,以此来表示这个序列,乃至新产生一个序列。 基本的RNN网络设计对长序列串往往束手无策,但是它的特殊变种 —— “长短期记忆模型(LSTM)” —— 则能处理这些数据。这类模型被认为非常强大,在许多类别的任务上取得了显著的成绩,包括机器翻译、语音识别、和看图写话
本文会先介绍动态系统的概念,然后介绍两种简单的反馈神经网络,然后再介绍两种门控神经网络(LSTM, GRU),最后是关于反馈神经网络的应用(本次以语音识别为例)。RNN: Recurrent neural network,一般叫它“反馈神经网络”或者“循环神经网络”。一、动态系统日常生活中,动态系统随处可见,蝴蝶扇动翅膀,它的翅膀是随着时间变化的,人走路、内燃机工作、股票等等,都是随着时间变化的。
RNN学习记录——预测代码实现RNN预测连续字符RNN预测股票 RNN预测连续字符abcd->e bcde->fimport numpy as np import tensorflow as tf from tensorflow.keras.layers import Dense, SimpleRNN, Embedding import matplotlib.pyplot as pl
转载 2024-03-01 21:09:08
82阅读
NAT 英文全称是“Network Address Translation”,中文意思是“网络地址转换”,它是一个 IETF(Internet Engineering Task Force, Internet 工程任务组)标准,允许一个整体机构以一个公用 IP(Internet Protocol)地址出现在 Internet 上。顾名思义,它是一种把内部私有网络地址(IP 地址)翻译成合法网络 I
一、RNN(循环神经网络) RNN结构 和传统前馈神经网络的不同(思想):模拟了人阅读文章的顺序,从前到后阅读每一个单词并将信息编码到状态变量中,从而拥有记忆能力,更好的理解之后的文本。即具备对序列顺序刻画的能力,能得到更准确的结果。模型:按时间展开可以看作是一个长度为T(句子长度)的前馈神经网络h,y 的激活函数可以是tanh或者relu: 假设Relu一直处于
RNN循环神经网络RNN基本形式一、 nn.RNN1、基础RNN2、2 layer RNN如下所示,带入上面知识理解二、nn.RNNCell1、基本RNNCell2、2 layer RNNCell RNN基本形式 RNN是用来处理带有时间序列的信息的,每一个时间段采用一个Cell来存储这个时间段之前的所有信息,即h0。 最一开始需要我们初始化建立一个h0表示在输入数据前起始的Cell状态,然后该
转载 2023-06-16 09:53:13
784阅读
学习Tensorflow的LSTM的RNN例子 16 Nov 2016 前几天写了学习Embeddings的例子,因为琢磨了各个细节,自己也觉得受益匪浅。于是,开始写下一个LSTM的教程吧。 还是Udacity上那个课程。 源码也在Github上。非常棒的技术,可能它已经向我们揭示了“活”的意义。RNN我已经尝试学习了几次,包括前面我这篇笔记,所以就直接进入代码阅读吧。 读例子程序: 1. 引
RNN在深度学习中占据重要地位,我们常常调用tensorflow的包就可以完成RNN的构建与训练,但通用的RNN并不总是能满足我们的需求,若要改动,必先知其细。也许你会说,我自己用for循环写个rnn的实现不就好了嘛,当然可以啊。但内置的函数一般都比for循环快,用 while_loop 的好处是速度快效率高,因为它是一个tf的内置运算,会构建入运算图的,循环运行的时候不会再与python作交互。
转载 2024-06-07 14:27:03
78阅读
RNN
RNN
原创 2021-08-02 15:26:00
275阅读
RNN
原创 2021-08-02 15:30:39
221阅读
二叉树的存储结构
原创 2021-08-08 16:10:06
187阅读
在TensorFlow中,RNN相关的源码主要分为两类,一类是表示基础Cell实现逻辑的类,这些类都继承自RNNCell类,主要包括BasicRNNCell、BasicLSTMCell、GRUCell等。另外一类就是让cell在不同时间轴上运转起来的循环流程控制类,包括动态单向RNN流程类tf.nn.dynamic_rnn、动态双向RNN流程类tf.nn.bidirectional_dynamic
本文是《深度学习进阶:自然语言处理》、《神经网络与深度学习》和《动手学深度学习》的读书笔记。本文将介绍基于Numpy的循环神经网络的前向传播和反向传播实现,包括RNN和LSTM。一、概述1.1 循环神经网络(RNN)循环神经网络(Recurrent Neural Networks, RNN)是一类具有短期记忆能力的神经网络,其特点是在处理序列数据时,能够记录历史信息。RNN已广泛地用于序列相关的任
转载 2023-07-06 17:21:07
163阅读
一、论文所解决的问题现有的关于RNN这一类网络的综述太少了,并且论文之间的符号并不统一,本文就是为了RNN而作的综述二、论文的内容 (0)整体一览由前馈神经网络-》RNN的早期历史以及发展-》现代RNN的结构-》现代RNN的应用(1)前馈神经网络 图1 一个神经元  图2 一个神经网络传统的前馈神经网络虽然能够进行分类和回归,但是这些都是假设数据之间是iid(独立同分
转载 2024-07-23 13:22:23
86阅读
  • 1
  • 2
  • 3
  • 4
  • 5