目录1. 自然语言1.1 Tokenize1.2 Pad1.3 Truncation1.4 Build tensors2. 图像2.1 特征提取2.2 数据增强 参考资料 https://huggingface.co/docs/transformers/main/en/preprocessing#preprocess本篇博客基于官方教程1. 自然语言1.1 Tokenize处理文本数据的主要工具
处理数据在这里,将介绍如何使用Transformers库来对数据进行处理,我们主要使用的工具是tokenizer。你可以创建一个和模型相关的tokenizer类,或者直接使用AutoTokenizer类。tokenizer是用来把一段文本划分成单词(或者单词的一部分,标点符号等)这些划分以后的到的结果,通常称之为tokens。接下来把这些tokens转换成numbers,这样就可以创建一个tens
转载
2024-04-07 09:31:36
168阅读
DPARSF总结数据处理流程预处理使用Dparsf进行预处理和指标计算选项功能介绍总结 数据处理流程预处理——>计算指标——>统计分析——>看图/作图 预处理后通过计算一些指标(FC、ReHo等)来对两组之间进行统计分析,比较它们之间显著的差异,得到的显著的结果使用Results View来看结果然后作图。将结果整理成表格或图放到文章里面去。 流程的预处理和计算指标可以在Dpar
转载
2024-10-18 10:59:50
259阅读
torchvision.transforms处理模块用法详解常用方法介绍应用实例处理单张张量图像示例处理多张张量图像示例 torchvision.transforms是pytorch中的图像预处理包(图像变换),一般用Compose把多个步骤整合到一起。可单独处理张量图像的变换,也可以接受成批的张量图像。 常用方法介绍transforms包中可实现图像的各种变换,如图像形状、颜色处理,还可进行
1、简介图像采集的功能由图像传感器实现, 目前图像传感器主要有电荷耦合器件CCD和CMOS传感器,CCD传感器具有高解析度、低噪声、动态范围大等优点;CMOS具备低成本、高的集成度、低功耗等有点。但不论是CCD还是CMOS传感器在将实际景物转换为图像信号时总会引入各种噪声和畸变失真,因此一般需要对图像传感器的图像进行预处理,本文将介绍色彩插值、色彩校正、伽马校正、图像增强和白平衡相关基础知识。这些
转载
2024-06-07 19:29:19
189阅读
围绕着要喂给神经网络的数据:收集数据、清洗数据、操作数据、给数据加标签、分析数据、做数据可视化等等。数据预处理思想纲领 基于对业务的理解,这种相对比较少一点,更多的还是基于数据本身。你可以用一些数据挖掘中常用的数据清理的方法,过滤异常值,过滤缺失严重的特征等等。 有时候做预处理,最终还是需要一些反馈。比如从数据上看,可能需要扔掉某些东西。我们需要去试一试,扔掉这些东西之后,在最终的比赛中,
在人工智能中,进行数据预处理是非常重要的步骤。数据预处理是将原始数据整理,清洗、修正或去除不需要的数据或噪声以及准备数据。下面就让我们来了解一下数据预处理的步骤和相关代码。一、数据预处理的步骤去除噪声在数据中可能会存在噪声、无意义、重复或缺失的数据。为了保证机器学习算法的准确性和可靠性,需要对这些无用数据进行清理和去除。数据转换由于机器学习模型的处理能力有限,因此有些数据类型无法进行处理。这就需要
转载
2023-11-10 20:41:47
451阅读
大数据蕴含巨大价值,引起了社会各界的高度关注。大数据的来源多种多样,从现实世界中采集的数据大体上都是不完整、不一致的脏数据,无法直接进行数据挖掘和分析,或分析挖掘的结果差强人意。为了提高数据分析挖掘的质量,需要对数据进行预处理。数据预处理方法主要包括数据清洗、数据集成、数据转换和数据消减。1 .数据清洗现实世界的数据常常是不完全的、含噪声的、不一致的。数据清洗过程包括缺失数据处理、噪声数据处理,以
转载
2024-04-23 16:42:10
145阅读
数据预处理 Preprocessing data在transformers中,数据处理的主要工具是文本标记器tokenizer。我们可以使用模型对应的文本标记器类型,也可以直接使用AutoTokenizer自动分类。文本标记器首先会把文本分割成单词、标点符号等,这些被分割的元素叫作token。然后将token转化为数字,使之能被转化为训练用的张量tensor。除此之外,一些特定的文本标记器还会加上
转载
2024-04-22 13:45:10
221阅读
数据预处理有四个任务,数据清洗、数据集成、数据 变换和数据规约。一、数据清洗1.缺失值处理 处理缺失值分为三类:删除记录、数据补差和不处理。 数据补插方法: 1. 补插均值/中位数/众数 2. 使用固定值 3. 最近邻补插 4. 回归方法 5. 插值法 插值法介绍: (1)拉格朗日插值法 (2)牛顿插值法 (需要另写,具有承袭性和易于变动节点的特点) (3)Her
转载
2023-11-28 14:48:13
209阅读
<!--- 预处理(预编译) --->
<?php
/*
防止 sql 注入的两种方式:
1. 人为提高代码的逻辑性,使其变得更严谨,滴水不漏。 比如说 增加判断条件,增加输入过滤等,但是智者千虑必有一失。(不推荐)
2. sql 语句的预处理
*/
// 预处理: 就是在程序正式编译之前,事先处理,因为有些功能实现
转载
2023-07-22 15:58:22
50阅读
各种数据分析技术的对象是数据源中的数据数据源中的数据可能不完整(如某些属性的值不确定或空缺)、含噪声和不一致(如同一个属性在不同表中的名称不同)、量纲不同如果直接在这些未经处理的数据上进行分析,结果不一定准确,效率也可能较低需要使用清理、集成、变换、归约等预处理方法改善数据质量,从而提高数据分析的效率与质量主要介绍数据清理、集成、变换、规约等预处理技术数据清理用于消除噪声、数据不一致及数据不完整噪
原创
2018-04-11 11:09:03
2190阅读
点赞
数据预处理 sec_pandas 到目前为止,我们已经介绍了处理存储在张量中数据的各种技术。为了能用深度学习来解决现实世界的问题,我们经常从预处理原始数据开始,而不是从那些准备好的张量格式数据开始。在Python中常用的数据分析工具中,
转载
2021-07-19 16:30:00
271阅读
2评论
在数据挖掘过程中,数据预处理工作量占到整个过程的60%。数据清洗缺失值处理删除记录数据插补不处理异常值处理删除含有异常值的记录视为缺失值平均值修正不处理很多情况下,要先分析异常值出现的可能原因,再判断异常值是否应该舍弃,如果是正确数据,可以直接用于数据挖掘。数据集成将多个数据源合并存放在一个一致的数据存储(如数据仓库)中的过程。实体识别同名异义异名同义单位不统一冗余属性识别同一属性多次出现同一属性
转载
2019-03-27 13:56:08
570阅读
一、读取数据集 1、将数据集按行写入到csv文件中 import os # os.path.join():路径拼接函数,本例中会生成如下路径 ../data # os.makedirs():用来创建多层目录(多层就是深度),exist_ok=True是在目录已存在的情况下不报错,默认为False,目 ...
转载
2021-07-23 10:36:00
492阅读
2评论
数据预处理的主要任务数据清洗: 填充缺失值,平
原创
2022-07-06 08:49:30
789阅读
预处理数据数据预处理(data preprocessing)是指在主要的处理以前对数据进行的一些处理。预处理数据包括数据的标准化映射到01均匀分布数据的归一化数据的二值化非线性转换数据特征编码处理缺失值等该sklearn.preprocessing软件包提供了几个常用的实用程序函数和变换器类,用于将原始特征向量更改为更适合下游估计器的表示。映射到统一分布QuantileTransformer并qu
原创
2021-03-04 15:29:07
1189阅读
数据预处理: 读取数据: import pandas as pd data=pd.read_csv(r'C:\Users\Administrator\Desktop\insurance.csv',encoding=('utf-8')) 筛选数据: # 去除噪点 data_1 = data.query ...
转载
2021-09-17 22:44:00
376阅读
2评论
先前说明:该文档为资料整理文档,仅供参考一、小技巧获得数据集的行名称和列名称dfname._stat_axis.values.tolist() # 行名称
dfname.columns.values.tolist() # 列名称水平分布data['y'].value_counts()查看变量的水平种类allFeatures=list(data.columns)
allFeatures.remove
转载
2023-11-01 15:46:56
149阅读
作者 | CDA数据分析师从菜市场买来的菜,总有一些是坏掉的不太好的,所以把菜买回来之后要做一遍预处理,也就是把那些坏掉的不太好的部分扔掉。现实中大部分的数据都类似于菜市场的菜品,拿到手以后会有一些不好的数据,所以都要先做一次预处理。常见的不规则数据主要有缺失数据、重复数据、异常数据几种,在开始正式的数据分析之前,我们需要先把这些不太规整的数据处理掉,做数据预处理。一、缺失值处
转载
2024-03-22 15:57:03
82阅读