大纲数学基础:凸凹函数,Jensen不等式,MLEEM算法公式,收敛性HMM高斯混合模型一、数学基础1. 凸函数通常在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法就能保证是全局的。定义1:集合是凸集,如果对每对点,每个实数,点定义2:我们称定义在凸集上的函数为
转载 2024-07-01 12:50:07
83阅读
本节书摘来自华章计算机《数据科学:R语言实现》一书中的第3章,第3.12节,作者 丘祐玮(David Chiu),更多章节内容可以访问云栖社区“华章计算机”公众号查看。3.12 估计缺失数据之前的教程介绍了如何检测数据集中的缺失数值。尽管包含缺失值的数据并不完整,但是我们还是要采用启发式的方法来补全数据集。这里,我们会介绍一些技术来估计缺失值。准备工作按照3.3节“转换数据类型”教程,把导入数据的
1、引言E,expectation(期望);M,maximization(极大化); EM算法,又称期望极大算法。EM已知的是观察数据,未知的是隐含数据和模型参数,在E步,我们所做的事情是固定模型参数的值,优化隐含数据的分布,而在M步,我们所做的事情是固定隐含数据分布,优化模型参数的值。为什么使用EM 算法? EM算法使用启发式的迭代方法,先固定模型参数的值,猜想模型的隐含数据;然后极大化观测数据
转载 2024-03-25 09:11:39
76阅读
最大期望算法(EM) K均值算法很easy(可參见之前公布的博文),相信读者都能够轻松地理解它。 但以下将要介绍的EM算法就要困难很多了。它与极大似然预计密切相关。1 算法原理最好还是从一个样例開始我们的讨论。如果如今有100个人的身高数据,并且这100条数据是随机抽取的。一个常识性的看法是。男性身高满足一定的分布(比如正态分布),女性身高也满足一定的分布。但这两个分布的參数不同。我们如
初识EM算法EM算法也称期望最大化(Expectation-Maximum,简称EM)算法。它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM)等等。EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation-Maximization Algorithm)。EM算法受到
转载 2024-05-28 11:07:02
132阅读
修改了原文段落100中关于score计算方式的理解。对于厘清事件关系和符号定义有很大帮助。001、一个非常简单的例子假设现在有两枚硬币1和2,,随机抛掷后正面朝上概率分别为P1,P2。为了估计这两个概率,做实验,每次取一枚硬币,连掷5下,记录下结果,如下:硬币结果统计1正正反正反3正-2反2反反正正反2正-3反1正反反反反1正-4反2正反反正正3正-2反1反正正反反2正-3反可以很容易地估计出P1
前言  EM算法大家应该都耳熟能详了,不过很多关于算法的介绍都有很多公式。当然严格的证明肯定少不了公式,不过推公式也是得建立在了解概念的基础上是吧。所以本文就试图以比较直观的方式谈下对EM算法的理解,尽量不引入推导和证明,希望可以有助理解算法的思路。介绍  EM方法是专门为优化似然函数设计的一种优化算法。它的主要应用场景是在用缺失数据训练模型时。由于数据的缺失,我们只能把似然函数在这些缺失数据上边
本文我们讨论期望最大化理论,应用和评估基于期望最大化的聚类(点击文末“阅读原文”获取完整代码数据)。 聚类相关视频软件包数据我们将使用mclust软件包附带的“糖尿病”数据。data(diabetes) summary(diabetes) ## class glucose insulin sspg## Chemical:36 Min. : 70 Min. : 45.0 Min. : 1
4-EM算法原理及利用EM求解GMM参数过程   1.极大似然估计  原理:假设在一个罐子中放着许多白球和黑球,并假定已经知道两种球的数目之比为1:3但是不知道那种颜色的球多。如果用放回抽样方法从罐中取5个球,观察结果为:黑、白、黑、黑、黑,估计取到黑球的概率为p;  假设p=1/4,则出现题目描述观察结果的概率
有两枚硬币A和B,假定随机抛掷后正面朝上概率分别为PA,PB。为了估计这两个硬币朝上的概率,咱们轮流抛硬币A和B,每一轮都连续抛5次,总共5轮:硬币结果统计A正正反正反3正2反B反反正正反2正3反A正反反反反1正4反B正反反正正3正2反A反正正反反2正3反硬币A被抛了15次,在1、3、5轮分别出现了3正、1正、2正,计算出 PA =(3+1+2)/ 15 = 0.4 ;类似地,可计算出&
下面代码为PRML所附的基于混合高斯(MoG)的代码,个人认为编码可读性和风格都值得借鉴。function [label, model, llh] = mixGaussEm(X, init) % Perform EM algorithm for fitting the Gaussian mixture model. % Input: % X: d x n data matrix % in
RPEnsemble代码阅读1.Other.classifier2.R3.RPchoose3.1. 函数调用3.2. 函数赋值3.3. 调用基分类器3.3.1. 调用knn3.3.2. 调用LDA3.3.2.1. 有训练集模式3.3.2.2. LOO模式3.3.3. 调用QDA4. RPChooseSS4.1.1. 调用knn【有验证集】4.1.2.调用LDA【有验证集】4.1.3. 调用QDA
 最大期望算法EM算法的正式提出来自美国数学家Arthur Dempster、Nan Laird和Donald Rubin,其在1977年发表的研究对先前出现的作为特例的EM算法进行了总结并给出了标准算法的计算步骤,EM算法也由此被称为Dempster-Laird-Rubin算法。1983年,美国数学家吴建福(C.F. Jeff Wu)给出了EM算法在指数族分布以外的收敛性证明。MLEM
四年前,Mode开始为世界上每一位数据分析师提供最佳数据分析平台。从此,有越来越多的人将分析作为他们日常工作的重要组成部分。现在Mode Studio发布了Mode历史上最大的两个革新,其不仅让Mode更强大,更重要的可以让每个人都便捷的用其做数据分析。R语言支持两年前,Mode Studio增加了对Python Notebook(数据分析脚本)的支持时,我们向这个目标迈进了一大步。但是从一开始就
最大期望算法(EM)K均值算法非常简单,相信读者都可以轻松地理解它。但下面将要介绍的EM算法就要困难许多了,它与极大似然估计密切相关。1 算法原理不妨从一个例子开始我们的讨论,假设现在有100个人的身高数据,而且这100条数据是随机抽取的。一个常识性的看法是,男性身高满足一定的分布(例如正态分布),女性身高也满足一定的分布,但这两个分布的参数不同。我们现在不仅不知道男女身高分布的参数,甚至不知道这
第一次写博客,好紧张学习了EM的理论后想写一下练练手。在网上找到了混合高斯的R代码;但是这个代码是有问题的,它只能在某些特定情况下使用。模拟数据是样本集5000个,前2000个是以3为均值,1为方差的高斯分布,后3000个是以-2为均值,2为方差的高斯分布。# 模拟数据 miu1 <- 3 miu2 <- -2 sigma1 <- 1 sigma2 <- 2 alpha1
目录总结一、基础的基础1. 数学期望(以下简称“期望”)2. 最大似然估计3. Jensen不等式 二、EM算法推导1. 从特殊到一般2. EM算法的推导3. EM算法总结 三、EM算法在高斯混合模型中的应用(重要)四、Python代码实现五、总结看到上面的表情了吗?没错,我的心情……为啥呢?因为我今天要讲一讲这个曾经耗费我将近两个月的时间去理解的EM(Emoji Melanc
Python机器学习算法实现Author:louwillMachine Learning Lab    从本篇开始,整个机器学习系列还剩下最后三篇涉及导概率模型的文章,分别是EM算法、CRF条件随机场和HMM隐马尔科夫模型。本文主要讲解一下EM(Expection maximization),即期望最大化算法。EM算法是一种用于包含隐变量概率模型参数的极大似然估计方法,所以本文
EM算法的定义及应用范围EM算法,即最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,用于含有隐变量(latent variable)的概率参数模型的最大似然估计或极大后验概率估计。EM算法应用于高斯混合模型(GMM)、聚类、隐式马尔科夫算法(HMM)、基于概率的PLSA模型等等。问题引出问题一:现在一个班里有50个男生,50
最大期望算法:EM算法。在统计计算中,最大期望算法(EM)是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量。最大期望算法经过两个步骤交替进行计算:第一步是计算期望(E),利用对隐藏变量的现有估计,计算其最大似然估计值;第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行。
  • 1
  • 2
  • 3
  • 4
  • 5