rcnn代码—train.py个人理解学习,仅供参考!一、总体流程总体流程如下二、get_crnn代码解读1.函数入口在train.pymodel = crnn.get_crnn(config)通过get_rcnn函数与配置信息(config)构建基础模型 2.get_rcnn函数def get_crnn(config): model = CRNN(config.MODEL.IMAGE_
转载 2024-04-29 21:40:34
125阅读
Faster-RCNN 代码阅读笔记(一)代码链接:https://github.com/chenyuntc/simple-faster-rcnn-pytorch可以看到,网络结构分为三个部分:Backbone: VGG16Region Proposal NetworkClassfication and Regression1. BackboneFaster-RCNN 是以VGG16作为backb
目录1.RCNN是什么东西2.处理数据集2.1 code:下载VOC数据集(pascal_voc.py)2.2 code: 数据集预处理(pascal_voc_car.py)3.code区域候选建议(selectivesearch.py)1.RCNN是什么东西        主要做目标检测用的。2.处理数据集      &nbs
首先贴上代码原作者的github:https://github.com/chenyuntc/simple-faster-rcnn-pytorch(非代码作者,博文只解释代码)今天看完了simple-faster-rcnn-pytorch-master代码的最后一个train.py文件,是时候认真的总结一下了,我打算一共总结四篇博客用来详细的分析Faster-RCNN代码的pytorch实现&nb
RCNN详解RCNN即region proposals(候选区域) + CNN,是将CNN引入目标检测领域的开山之作(2014年),大大提高了目标检测的效果,在其后也是出现了更优异的变体Fast RCNN, Faster RCNN。下文按照RCNN的工作过程依次介绍1. 生成候选区域获取候选区域最直接的方式就是滑窗法了,但是滑窗法需要用一个固定大小的小窗口遍历整张图片,因此其有很多的局限性。所以一
0. Faster RCNN概述论文地址:https://arxiv.org/pdf/1506.01497.pdfFaster R-CNN源自2016年发表在cs.CV上的论文《Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks》,使用RPN(建议区域网络)的实时物体检测,Faster R-C
 1.backbone含义        backbone用于特征提取,通常使用的是VGG16或者ResNet网络,其中要经过4个pooling层,且经过多层卷积后层数也发生了变化,但仍要保证在进行下一次池化之前,特征图深度为上一次池化之前深度的两倍。故第一个pooling层的strides=4,第二个的st
0.目的  刚刚学习faster rcnn目标检测算法,在尝试跑通github上面Xinlei Chen的tensorflow版本的faster rcnn代码时候遇到很多问题(我真是太菜)1. 运行环境配置  代码的README里面说明了,环境要求既有是这个git里面的,还有就是rbg的caffe代码中也有了一些环境。基本上包括:python2.7CUDA(并行计算库)>=6.0cudnn(
转载 2024-02-22 13:21:15
145阅读
下面这幅图最清晰地展示了Faster R-CNN的原理:基于tensorflow的实现:非极大值抑制(Non Maximum Suppression):NMS操作步骤:1.选出候选框中得分最高的一个,图中红色的框2.去掉和红色的重叠度很高的候选框(重叠度用IOU计算,删除标准根据设定的阈值,如0.7),重叠度很高的候选框比较浪费计算,因此去掉。之后在剩余的框中继续采用以上顺序,选取边框,找到所有曾
重温RCNN系列RCNNSPP NETFast RCNNROI poolingFaster RCNNRPNRPN的loss:RPN正负样本选择:LOSS训练流程: 在接触目标检测之初,大体上很粗略的看过一遍RCNN系列,但是很多细节都清楚。 昨天又重温了一下RCNN,把网络的框架又认真的学习了一边。 RCNNR-CNN的简要步骤如下(1) 输入测试图像(2) 利用选择性搜索Selective
转载 2024-05-28 11:07:31
167阅读
L2   lossRPN网络中对于边框的预测是一个回归问题,通常可以选择平方损失函数,即L2损失。但是当预测值与目标值相差很大时,容易产生梯度爆炸。                   &n
转载 2024-05-11 07:09:44
69阅读
前言从本章开始就要进入学习faster rcnn的复现了,深入了解目标检测的核心,只有知道等多的细节才能有机会创造和改进,代码很多,所以我也是分章节更新。每次学会一个知识点就可以了。我写的有retinanet网络,代码阅读和复现难度较低,建议先去学习。后再来学习faster rcnn。候选框的生成目标检测的第一步,就是你要先生成框的位置信息,再去画出来,它是如何产生框的坐标点。以及如何按照一定大小
之前的文章介绍过RCNN,有几个问题:a.训练分多步。R-CNN的训练先要fine tuning一个预训练的网络,然后针对每个类别都训练一个SVM分类器,最后还要用regressors对bounding-box进行回归,另外region proposal也要单独用selective search的方式获得,步骤比较繁琐。b.时间和内存消耗比较大。在训练SVM和回归的时候需要用网络训练的特征作为输入
一、研究意义 卷积神经网络(CNN)由于其强大的特征提取能力,近年来被广泛用于计算机视觉领域。1998年Yann LeCun等提出的LeNet-5网络结构,该结构使得卷积神经网络可以端到端的训练,并应用于文档识别。LeNet-5结构是CNN最经典的网络结构,而后发展的卷积神经网络结构都是由此版本衍生而来。 在过去六年中,由于深度学习和卷积网络的发展和进步,基于图像的目标检测和分类能力已经大大提高。
目录环境安装:pycuda安装:开源项目信息fasterRCNN的训练faster rcnn onnx实践第3步测试结果:第4步测试结果:单张图片测试代码:多张图片预测代码:第5步做了修改:第7步测试:第8步测试测试报错The input tensor cannot be reshaped to the requested shape:正确类别数量设置:测试正确结果:onnx转trt操作c++ 转
1.Faster RCNN 整体思路概述如图1.1所示,Faster RCNN 的整体框架按照功能区分,大致分为4个模块,分别是特征提取网络backbone模块、RPN模块、RoI and RoI pooling模块和RCNN模块。图 1.1 Faster RCNN 整体框架Backbone模块:主要负责接收输入数据,并进行数据预处理和特征提取得到输入图像对应的feature maps,并传递给下
faster rcnn代码解读参考 之前rpn的anchor生成和target以及loss都有了,rpn环节以及是完整的了,下面就是rcnn环节。rcnn的输入其实就是rpn的输出。class rcnn_target_layer(nn.Module): """ Assign object detection proposals to ground-truth target
转载 2024-03-13 17:37:43
120阅读
在R-CNN和Fast RCNN的基础上,在2016年提出了Faster RCNN网络模型,在结构上,Faster RCNN已经将候选区域的生成,特征提取,目标分类及目标框的回归都整合在了一个网络中,综合性能有较大提高,在检测速度方面尤为明显。接下来我们给大家详细介绍fasterRCNN网络模型。网络基本结构如下图所示:Faster RCNN可以看成是区域生成网络(RPN)与Fast RCNN的组
在objects detection算法中,大概可以分为两大方向一、Two-Stage,这是一种Proposal-based的方法,需要先使用启发式方法(selective search)或者CNN网络(RPN)产生Region Proposal,然后再在Region Proposal上做分类与回归。精度高,但是速度慢。R-CNNFast R-CNNFaster R-CNNMask R-CNN二、
转载 2023-08-22 22:02:14
61阅读
网络输出获得了我们看create_architecture剩余的部分:   主要就是计算损失的部分_add_losses:整体的公式是这样的:分别介绍一下:分类损失:    RPN这部分只计算label不为-1的部分的损失总共应该是RPN_BATCHSIZE=256个,把它对应的label和rpn_cls_score都选出来计算
转载 2024-04-25 12:03:58
65阅读
  • 1
  • 2
  • 3
  • 4
  • 5