1 contiguousTensor底层一维数组元素的存储顺序与Tensor按行优先一维展开的元素顺序是否一致。1.1 tensor的存储 Tensor多维数组底层实现是使用一块连续内存的1维数组,Tensor在元信息里保存了多维数组的形状。 &nb
转载
2023-11-06 20:41:25
127阅读
## PyTorch中的维度扩展
在深度学习中,维度扩展是一项重要的操作,它允许我们改变张量的形状,以便更好地适应不同类型的任务。PyTorch是一个非常受欢迎的深度学习库,它提供了丰富的函数和工具来处理维度扩展。
本文将介绍PyTorch中的维度扩展的概念、用法和示例代码。我们将使用一些常见的维度扩展函数,如`unsqueeze`、`view`和`expand`,以帮助读者更好地理解。
#
原创
2023-08-21 10:13:47
399阅读
在使用 PyTorch 进行深度学习时,维度扩展是一个常见的问题。在高维数据处理、模型输入和特征工程时,如何有效地扩展张量的维度显得尤为重要。下面,我将详细介绍如何解决 PyTorch 中的维度扩展问题,包括环境准备、集成步骤、配置详解、实战应用、排错指南以及性能优化。
### 环境准备
在开始之前,确保你的环境中安装了以下技术栈:
- Python 3.6+
- PyTorch
- Num
维度变换1.view = reshape view变化的前提是保证整个tensor的size不变。 注:所做的合并必须有物理意义!2、Squeeze(减少维度)/unsqueeze(增加维度) Squeeze是将没有参数的位置挤压。3、expand / repeat expand :只是改变理解方式,并没有增加数据,只有在必要的时候拷贝数据 repeat:增加了数据 expand:只有维度是1的才
转载
2023-10-26 23:58:31
413阅读
今天,让我们来放松一下大脑,学习点轻松的东西————可视化工具Visdom,它可以让我们在使用PyTorch训练模型的时候,可视化中间的训练情况,无论是loss变化还是中间结果比较。相比干呆呆的瞪着命令行,Visdom让我们的调参之路变得更加生动和活泼了.~0. 前言对于一些任务,尤其是难以收敛以及情况复杂的,如果在训练过程中,实时可视化训练情况,将会让我们对训练手段进行及时调整,更好的达到目标,
转载
2023-09-15 15:24:15
86阅读
文章目录1,张量扩增([expand](https://pytorch.org/docs/stable/generated/torch.Tensor.expand.html?highlight=expand), [repeat](https://pytorch.org/docs/stable/generated/torch.Tensor.repeat.html?highlight=repeat#
转载
2024-05-18 17:28:27
230阅读
简介今天在使用torch中的topk的时候, 对于dim产生了一些疑问. 后面也是找到了规律, 但是还是很困惑他为什么是这么设计的, 即dim与tensor本身的行列是不一致的. 然后就查了一下, 真的找到了一篇很好的文章, 解决了我的困惑, 就想在这里记录一下.我这一篇文章里的所有的动图, 都是来自与下面这篇文章, 写的非常直观.原文链接(十分棒的文章), Understanding dime
转载
2023-08-25 22:05:33
170阅读
解释pytorch的维度理解 PyTorch 中维度的概念 | 文艺数学君x = torch.tensor([
[1,2,3],
[4,5,6]
])
# 我们可以看到"行"是dim=0, "列"是dim=1
print(x.shape)
>> torch.Size([2, 3])于是, 我们会认为, torch.sum(x, dim=
转载
2023-10-01 09:14:42
119阅读
pytorch中有两种方式可以进行维度扩展,第一种是,第二种是使用None索引进行扩展。
原创
2023-01-17 02:19:08
133阅读
文章目录view()和reshape()transpose()和permute()contiguous 以后操作基于下述tensor。import torch
a=torch.rand(2,2,2)
print(a)view()和reshape()这两个功能很简单,就是把原来的tensor拍扁,变成8个数,然后按照你给定的形状恢复出来。问题, 怎么拍扁,就是把第二维里面数依次取出来,比如上面的就
转载
2024-03-03 10:53:25
53阅读
深度学习初探/02-Pytorch知识/04-Tensor维度变换一、重塑两者完全一致,reshape是pytorch为了保持与numpy的一致性而出现的缺陷:可能会破坏原有数据# 随机生成4幅MNIST数据集标准的手写数字图像
a = torch.rand(4, 1, 28, 28)
# 调用numpy的prod函数,打印a的实际大小(各个维度的乘积)
print(np.prod(a.size(
转载
2023-10-18 21:14:09
169阅读
张量的维度和形变张量作为一组数的结构化表示,也同样拥有维度的概念。简便理解:向量就是一维的数组,而矩阵是二维的数组,以此类推,在张量中我们还可以定义更高维度的数组。张量的高维数组和numpy中高维array概念类似。记住:文章中提到的,t1为一维张量,t2为二维张量,t3为零维张量,t4为三维张量。1、创建一维、二维、零维、高维张量1.1 用简单序列创建一维张量#用一维列表序列创建一维张量
t1
转载
2024-05-09 16:05:07
128阅读
数据增强与数据读取数据增强为什么要进行数据增强深度学习模型的参数很多,模型复杂度很高,如果此时数据集数量不够导致数据集中数据的复杂度没有涵盖所有特征空间,那么模型就会学习到这些数据集的一些独有的特征,这会导致过拟合的问题,因此我们有必要对数据集进行增强操作以减小过拟合的风险。利用pytorch进行数据增强在pytorch的torchvision库中提供了很多的数据增强方法,主要可以分为四类:裁剪翻
转载
2024-05-29 06:29:15
36阅读
pytorch中对于矩阵要进行的操作很多,但是初学者可能并不很清楚矩阵的维度,以及当矩阵维度变大时候,怎么知道我们要操作的维度在哪里。1.学会观察中括号,了解你现在的输出数据到底是在几维空间。 tensor([[[0.1205, 0.1218],
[0.1326, 0.1112],
[0.1276, 0.1477],
[0.1228, 0.1
转载
2023-10-09 08:32:22
643阅读
2-pytorch基础知识 文章目录2-pytorch基础知识2.1-张量2.1.1-什么是张量2.1.2-创建tensor2.2-自动求导2.2.1-PyTorch机制2.2.2-数学基础2.2.3-动态计算图2.2.4-自动求导.ipynb2.3-并行计算 2.1-张量2.1.1-什么是张量张量(Tensor)是一个定义在一些向量空间和一些对偶空间的笛卡尔积上的多重线性映射,其坐标是|n|维空
转载
2023-10-19 11:18:15
86阅读
一、张量(一)张量介绍张量(也可以叫做Tensors)是pytorch中数据存储和表示的一个基本数据结构和形式,它是一个多维数组,是标量、向量、矩阵的高维拓展。它相当于Numpy的多维数组(ndarrays),但是tensor可以应用到GPU上加快计算速度, 并且能够存储数据的梯度信息。
维度大于2的一般称为高维张量。以计算机的图像处理数据为例
3维张量,可以表示图像的:通道数×高
转载
2024-05-09 12:09:12
245阅读
pytorch学习torch的Tensor维度变换view和reshape功能一样-不变的是数据本身,变维度改变对数据的理解缩小/扩大维度,正的维度在索引之后插入,负的维度在索引之前插入例子:给每幅图一个偏置bias 右边扩两次,左边一次,从[32]得到[1 32 1 1 ]维度扩展:expend/repeat,expend在需要的时候复制数据,节约内存,推荐;repeat复了数据 expend扩
转载
2023-10-23 12:46:35
239阅读
使用Pytorch构建神经网络一般分为四个步骤:数据构建与处理(Dataset)构建神经网络和损失函数(nn.Module)对参数进行优化(torch.optim)模型的保存与加载一、Tensor(张量) Pytorch基本操作是OP,被操作的最基本对象是Tensor。Tensor表示一个多维矩阵。比如零位就是一个点,一维就是向量,二维就是矩阵,多维相当于一个多维的数组。这个numpy是对应的。而
转载
2024-06-09 07:44:20
58阅读
本篇pytorch的维度变换进行展示,包含:view/reshapesqueeze/unsqueezeexpand/repeattranspose/t/permutebroadcast使用方法和含义均在代码的批注中给出,因为有较多的输出,所以设置输出内容的第一个值为当前print()方法所在的行维度变换import torch
import numpy as np
import sys
loc =
转载
2024-08-20 17:26:28
74阅读
1. 改变shapetorch.reshape()、torch.view()可以调整Tensor的shape,返回一个新shape的Tensor,torch.view()是老版本的实现,torch.reshape()是最新的实现,两者在功能上是一样的。示例代码:import torch
a = torch.rand(4, 1, 28, 28)
print(a.shape)
print(a.vie
转载
2023-12-25 13:27:54
157阅读