1. 量化原理模型量化是用8bit整数去表示32bit浮点型小数的过程,模型量在移动端是比不可少的步骤,量化化的好处主要在于减少模型的体积,加快模型的计算速度,但在一定程度上会损失模型的精度。模型量化的原理:这里的S和Z均是量化参数,而Q和R均可由公式进行求值,不管是量化后的Q还是反推求得的浮点值R,如果它们超出各自可表示的最大范围,那么均需要进行截断处理,前向传播是将float32权重缩放到in
VGG代码解读 目录VGG代码解读概述网络结构图VGG代码细节分析 概述VGG跟AlexNet在结构上没有本质上的区别,在AlexNet的基础上变得更深了,依然是“直通”式的结构,提出了局部响应结构(LRN),效果改善很小。整体上的架构仍然是卷积、激活、池化提取特征,然后前向神经网络做分类器。网络结构图vgg_A、vgg_B、vgg_C、vgg_D、vgg_E分别对应不同的vgg结构变种,其中LR
转载 2024-09-07 23:05:37
79阅读
前言本文主要分为两部分:第一部分大致的介绍了VGG原理 第二部分详细的介绍了如何用pytorch实现VGG模型训练自己的数据集实现图像分类想只看代码部分的同学,可以直接看第二部分内容一:VGG原理简介1.VGG主要工作2014年的论文,主要工作是证明了增加网络的深度能够在一定程度上影响网络最终的性能。VGG有两种结构,VGG16和VGG19,两者并没有本质上的区别,只是网络深度不一样。论文地址:V
1. VGGVGG块的组成规律是:连续使用数个相同的填充为1、窗口形状为的卷积层后接上一个步幅为2、窗口形状为的最大池化层。卷积层保持输入的高和宽不变,而池化层则对其减半。我们使用vgg_block函数来实现这个基础的VGG块,它可以指定卷积层的数量和输入输出通道数。import time import torch from torch import nn, optim import sys
转载 2023-08-14 20:28:59
102阅读
一、VGG网络详解及感受野计算VGG在2014年由牛津大学著名研究组VGG(Visual Geometry Group)提出,斩获该年ImageNet竞赛中Localization Task(定位任务)第一名和Classification Task(分类任务)第二名。VGG有两种结构,分别是VGG16和VGG19,两者并没有本质上的区别,只是网络深度不一样。VGG网络的创新点:通过堆叠多个小卷积核
在深度学习中,我们可以使用预训练的模型来进行微调或者迁移学习;有时候在没有预训练模型的情况下,我们也使用pytorch或者tf中预定义的模型;但是手动实现理解深度学习模型也是非常重要的;这也就是我们为什么要在这里实现CGG16的深度学习模型; 在本教程中,我们将学习到:一、VGG11网络1)网络的基本架构;2)不同的卷积和全连接层;3)参数的数量4)实现细节二、使用Pytorch手动实现
转载 2023-09-15 14:27:52
141阅读
一、VGG模型VGG模型是科学家们提出的图像分类模型,这一模型采用了简单粗暴的堆砌3×3卷积层的方式构建模型,并花费大量的时间逐层训练,最终在ImageNet图像分类比赛中获得了亚军,这一模型的优点是结构简单,容易理解,便于利用到其他任务当中VGG-19网络的卷积部分由5哥卷积块构成,每个卷积块中有多个卷积层,结尾处有一个池化层 结构如下图所示 二、图像风格迁移介绍图像风格迁移是指将一张
深度学习框架:图片来自网络不必多说,深度学习爱好者入门首先接触的就是深度学习框架了,Pytorch作为目前最流行的深度学习框架,不论是在其性能还是简洁性上都是目前最适合入门学习的一个框架。Linux基础:熟悉开发环境是进行开发的首要工作,在Linux环境下开发在深度学习中是最为流行的,尽管Windows开发也很不错,但考虑企业和院所实际开发环境,掌握必备的Linux基础是必要的。Linux:Lin
目录1. 模型量化是什么2. Pytorch模型量化2.1 Tensor的量化2.2 训练后动态量化Post Training Dynamic Quantization2.3 训练后静态量化Post Training Static Quantization2.4 训练时量化Quantization Aware Training3. 混合精
pytorch框架下参数渐进量化的实现将pytorch框架下的参数量化为特定形式,会产生一定的误差,这篇博客以MINIST数据集,LSTM量化为例,主要写了量化的详细流程,并附上完整程序。 文章目录pytorch框架下参数渐进量化的实现一、量化原理二、自定义RNN框架三、MNIST数据集和建模,初始化四、量化函数介绍五、量化权重矩阵总结示例工程代码: 一、量化原理本博客介绍的量化方式,可以将参数量
1. 参考pytorch官方quantizationquantization API2. qconfig设置2.1 选择量化后端qnnpack or fbgemm'qnnpack’和’fbgemm’都是用于在量化部署中对模型进行加速。fbgemm目前被更新为‘x86’支持的硬件平台不同:'qnnpack’是一种专为 ARM CPU 设计的量化后端,而 ‘fbgemm’ 则是一种适用于 Intel
文章目录前言一、pytorch静态量化(手动版)踩坑:二、使用FX量化1.版本2.代码如下:总结 前言以前面文章写到的mobilenet图像分类为例,本文主要记录一下pytorchh训练后静态量化的过程。一、pytorch静态量化(手动版)静态量化是最常用的量化形式,float32的模型量化成int8,模型大小大概变为原来的1/4,推理速度我在intel 8700k CPU上测试速度正好快4倍,
参考中文官方,详情参考:PyTorch 如何自定义 Module1.自定义Module Module 是 pytorch 组织神经网络的基本方式。Module 包含了模型的参数以及计算逻辑。Function 承载了实际的功能,定义了前向和后向的计算逻辑。 下面以最简单的 MLP 网络结构为例,介绍下如何实现自定义网络结构。完整代码可以参见repo。1.1 FunctionFunction 是 py
转载 2024-07-29 23:24:25
142阅读
 Pytorch1.8 发布后,官方推出一个 torch.fx 的工具包,可以动态地对 forward 流程进行跟踪,并构建出模型的图结构。这个新特性能带来什么功能呢?别的不说,就模型量化这一块,炼丹师们有福了。其实早在三年前 pytorch1.3 发布的时候,官方就推出了量化功能。但我觉得当时官方重点是在后端的量化推理引擎(FBGEMM 和 QNNPACK)上,对于 pytorch
转载 2024-08-15 00:24:43
96阅读
逆天的反转策略在A股实证—策略介绍—动量策略和反转策略的原理主要是基于股票市场中可能存在的动量效应或反转效应。所谓【动量效应】,是指在一段时间内,股票会延续它过去的趋势。过去涨,接下来继续涨的概率比较大,也就是我们常说的强者恒强;过去跌,接下来就更可能继续跌。基于股票动量效应,我们可以通过买入过去收益率高的股票、卖出过去收益率低的股票来构建投资组合,这种构建投资组合的方法叫做动量策略。而反转效应恰
在深度学习领域中,生成对抗网络(GAN)和风格迁移(Style Transfer)等任务已成为热门话题。为了提高图像生成的质量,很多人开始关注使用VGG损失(VGG Loss)作为优化目标。VGG Loss利用了VGG网络的特征提取能力,使得生成的图像在视觉上更加真实。但是,在实现过程中,很多人在使用PyTorch进行VGG Loss计算时遇到了各种问题。接下来,我将详细记录我解决“VGG Los
原创 6月前
168阅读
本篇文章给大家带来的内容是关于Python+OpenCV图像风格迁移的实现方法讲解,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。现在很多人都喜欢拍照(自拍)。有限的滤镜和装饰玩多了也会腻,所以就有 APP 提供了 模仿名画风格 的功能,比如 prisma、versa 等,可以把你的照片变成 梵高、毕加索、蒙克 等大师的风格。这种功能叫做“ 图像风格迁移 ”,几乎都是基于 CVPR
# 实现“pytorch vgg16”的步骤 本文将指导你如何使用PyTorch实现VGG16模型。VGG16是一种深度卷积神经网络,特别适用于图像分类任务。下面是实现的步骤: | 步骤 | 描述 | | --- | --- | | 步骤一 | 导入必要的库和模块 | | 步骤二 | 加载图像数据集 | | 步骤三 | 数据预处理 | | 步骤四 | 定义VGG16模型 | | 步骤五 | 训
原创 2023-11-26 10:03:56
276阅读
在深度学习的实践中,模型的大小和推理速度常常会对业务应用带来显著的影响。PyTorch量化技术正是为了解决这一问题而产生的。量化是通过将浮点模型转换为低精度参数(如int8)来降低内存使用和加速推理过程的技术。特别是在移动设备或嵌入式设备上,量化成为实现高效推理的关键手段。 ### 业务影响 量化不仅可以减少模型的存储大小,还能提高推理速度,这在业务场景中尤为重要。比如,为了满足实时推理的需求
原创 6月前
47阅读
GG-Network是K. Simonyan和A. Zisserman在论文“Very Deep Convolutional Networks for Large-Scale Image Recognition”中提出的卷积神经网络模型。该架构在 ImageNet 中实现了 92.7% 的 top-5 测试准确率,该网络拥有超过 1400 万张属于 1000 个类别的图像。它是深度学习领域的著名架
转载 2023-12-14 09:15:23
42阅读
  • 1
  • 2
  • 3
  • 4
  • 5