最近使用Pytorch,搭建了一个RNNLM,目的是为了利用词典中的每个词的One-Hot编码(高维的稀疏向量),来生成 Dense Vectors。这篇文章不讲解RNN原理以及为什么使用RNN语言模型,只是对pytorch中的代码使用进行讲解。 目前Pytorch的资料还比较少,我主要还是通过学习Pytorch文档+使用Pytorch官方论坛的形式来入门Pytorch 全部代码如下:import
转载 2024-08-03 16:17:50
0阅读
文章目录1 使用moviepy库包提取音频1.1 moviepy库包说明1.2 安装moviepy1.2 使用moviepy提取视频中的音频2 使用librosa库包读取音频文件,并分析音频文件2.1 librosa库包介绍2.2 使用librosa读取音频文件,并分析音频文件3 绘制音频信号的强度图3.1 使用matplotlib绘制音频信号强度图3.2 使用librosa画信号强度图 1 使
本专栏将主要介绍基于GAN的时序缺失数据填补。提起时序数据,就离不开一个神经网络——循环神经网络(Recurrent Neural Network, RNN)。RNN是一类用于处理序列数据的神经网络。RNN对具有序列特性的数据非常有效,它能挖掘数据中的时序信息。因为在介绍时序缺失数据填补,就离不开RNN的身影。本文将介绍循环神经网络RNN,并再次基础上完成基于pytorch的简单RNN代码实现,帮
目录前言run_nerf.pyconfig_parser()train()create_nerf()render()batchify_rays()render_rays()raw2outputs()render_path()run_nerf_helpers.pyclass NeRF()get_rays_np()ndc_rays()load_llff.py_load_data()_minify()
转载 2023-11-20 10:20:38
259阅读
文章目录RNN标准RNN代码 RNN标准RNNPyTorch中的调用也非常简单,使用 nn.RNN()即可调用,下面依次介绍其中的参数。 RNN() 里面的参数有input_size 表示输入 xt 的特征维度hidden_size 表示输出的特征维度num_layers 表示网络的层数 nonlinearity 表示选用的非线性激活函数,默认是 ‘tanh’ bias 表示是否使用偏置,默
转载 2023-08-20 19:37:08
131阅读
文章目录RNN参数代码GRU公式代码LSTM公式代码 如题,几个经典的NLP模型,Pytorch实现也比较简单,复杂的模型可以通过他们堆叠而成,比如encoder decoder这些。 RNN首先是最简单的RNN, 他的模型最简单,就是当前时刻的input, 和上一时刻的hidden state,分别和一个W参数相乘,然后经过一个tanh门即可。还可以加上偏置项,在pytroch官方文档中,偏
1.47.Pytorch实现基本循环神经网络RNN (3)Recurrent Neural networks(Rumelhart, 1986)主要用来处理序列型数据,具有对以往数据的记忆功能。下图所示,输入为input和一个状态Hidden0, 输出为output和hidden1. 一般地,对输入到RNN进行处理的第t个数据,也就是第t时刻,输出的隐藏状态可以表示为: 在RNN对序列数据进行处理时
转载 2023-10-18 17:22:41
92阅读
代码解读说明一、项目结构二、训练部分2.1 模型导入(models.py解析)2.1.1 __init__函数2.1.2 _prepare_base_model函数2.1.3 _prepare_base_model函数附1 多gpu与断点恢复设置2.2 数据导入(dataset.py解析)2.2.1 __ init __函数2.2.2 _parse_list函数2.2.3 _sample_ind
上次通过pytorch实现了RNN模型,简易的完成了使用RNN完成mnist的手写数字识别,但是里面的参数有点不了解,所以对问题进行总结归纳来解决。 总述:第一次看到这个函数时,脑袋有点懵,总结了下总共有五个问题:1.这个input_size是啥?要输入啥?feature num又是啥?2.这个hidden_size是啥?要输入啥?feature num又是啥?3.不是说RNN会有很多个
转载 2023-07-17 12:48:42
94阅读
import torch #简单RNN学习举例。 # RNN(循环神经网络)是把一个线性层重复使用,适合训练序列型的问题。单词是一个序列,序列的每个元素是字母。序列中的元素可以是任意维度的。实际训练中, # 可以首先把序列中的元素变为合适的维度,再交给RNN层。 #学习 将hello 转为 ohlol。 dict=['e','h','l','o'] #字典。有4个字母 x_data=[1,0,2
转载 2023-09-15 22:08:15
153阅读
rnn音频降噪是近年来机器学习和信号处理领域的一项重要技术。它主要通过递归神经网络(RNN)来对音频信号中的噪声进行抑制,从而提高音频的清晰度和质量。接下来,我将详细描述解决rnn音频降噪问题的过程,包括协议背景、抓包方法、报文结构、交互过程、字段解析和扩展阅读等内容。 ### 协议背景 音频降噪的背景可以追溯到音频信号处理的早期阶段。在20世纪80年代,传统的滤波器技术已被广泛应用于音频处理
原创 1月前
160阅读
本篇文章是一篇长篇的研究报告,共有近3.8万字,整合参考了很多相关的行业技术文章,如有雷同,纯属崇拜您的学问!!一、语音识别的基础概念1、定义:语音识别(Automatic Speech Recognition)是以语音为研究对象,通过语音信号处理和模式识别让机器自动识别和理解人类口述的语。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一
0. 前言很久没用过Pytorch,忘得差不多了,最近课题需要用,所以整理一下RNN的使用方法。记得去年学这部分一直很迷糊,所以希望这篇博客能对大家有所帮助。1. 简单循环神经网络结构先简单聊聊RNN的结构。最简单的一层RNN网络结构如下图所示,其中,每个箭头都表示一个权值,输入为向量,输出向量为,隐含层向量为,一层指的是有一层隐含层。 循环神经网络结构也可以表示成下面两图: 其实,这些图都是等价
转载 2024-08-09 10:34:40
182阅读
学习笔记|Pytorch使用教程36本学习笔记主要摘自“深度之眼”,做一个总结,方便查阅。 使用Pytorch版本为1.2循环神经网络(RNN) 是什么?RNN如处理成不定长输入?训练RNN实现人名分类总结一.循环神经网络(RNN) 是什么?RNN :循环神经网络处理不定长输入的模型常用于NLP及时间序列任务(输入 数据具有前后关系)网络结构 xt:时刻t的输入,shape = (1, 57) s
转载 2024-02-10 01:48:37
58阅读
pytorch 中使用 nn.RNN 类来搭建基于序列的循环神经网络,其构造函数如下:nn.RNN(input_size, hidden_size, num_layers=1, nonlinearity=tanh, bias=True, batch_first=False, dropout=0, bidirectional=False)RNN的结构如下: RNN 可以被看做是同一神经网络的多次赋值
总述:第一次看到这个函数时,脑袋有点懵,总结了下总共有五个问题:1.这个input_size是啥?要输入啥?feature num又是啥?2.这个hidden_size是啥?要输入啥?feature num又是啥?3.不是说RNN会有很多个节点连在一起的吗?这怎么定义连接的节点数呢?4.num_layer中说的stack是怎么stack的?5.怎么输出会有两个东西呀output,hn此篇博客介绍p
# PyTorch RNN介绍与示例 在深度学习领域,循环神经网络(Recurrent Neural Networks,RNN)是一种非常重要的模型,用于处理序列数据。PyTorch是一个流行的深度学习框架,提供了强大的RNN模块来构建和训练循环神经网络模型。本文将介绍PyTorchRNN的基本概念,并通过示例代码进一步展示如何使用PyTorch构建和训练RNN模型。 ## 什么是循环神经网
原创 2023-07-31 08:43:51
137阅读
RNN结构本文中的RNN泛指LSTM,GRU等等CNN中和RNN中batchSize的默认位置是不同的。CNN中:batchsize 的位置是 position 0.RNN中:batchsize 的位置是 position 1.一、pytorch中两种调取方式对于最简单的RNN,我们可以使用两种方式来调用.torch.nn.RNNCell()    它只接受序列中的单步输入,必
转载 2023-07-28 21:23:15
158阅读
Liner、RNN、LSTM的构造方法\输入\输出构造参数pytorch中所有模型分为构造参数和输入和输出构造参数两种类型。模型构造参数主要限定了网络的结构,如对循环网络,则包括输入维度、隐层\输出维度、层数;对卷积网络,无论卷积层还是池化层,都不关心输入维度,其构造方法只涉及卷积核大小\步长等。这里的参数决定了模型持久化后的大小.输入和输出的构造参数一般和模型训练相关,都需指定batch大小,s
RNN循环神经网络RNN基本形式一、 nn.RNN1、基础RNN2、2 layer RNN如下所示,带入上面知识理解二、nn.RNNCell1、基本RNNCell2、2 layer RNNCell RNN基本形式 RNN是用来处理带有时间序列的信息的,每一个时间段采用一个Cell来存储这个时间段之前的所有信息,即h0。 最一开始需要我们初始化建立一个h0表示在输入数据前起始的Cell状态,然后该
转载 2023-06-16 09:53:13
784阅读
  • 1
  • 2
  • 3
  • 4
  • 5