查看GPU版本和使用情况import torch if torch.cuda.is_available(): device = torch.device("cuda") print('There are %d GPU(s) available.' % torch.cuda.device_count()) print('We will use the GPU:', torch
一、学习目标1.学习各种思想的情感模型2.了解通过情感诱发方法所建立的情感模型二、情感模型        想要进行情感计算,首先步骤就是对情感建模,要分析理解情感的产生,从而才能让计算机理解情感。由于情感是感性的,所以现有的情感模型都是基于研究者的猜想和假设。以下是各种情感模型:三、基于基本情感论的情感模型情感是离散的、分门别类的、复杂情绪由基础情感相互组合
转载 2024-06-27 20:09:03
380阅读
先运行main.py进行文本序列化,再train.py模型训练 dataset.py from torch.utils.data import DataLoader,Dataset import torch import os from utils import tokenlize import c
文章目录1 前言2 情感文本分类2.1 参考论文2.2 输入层2.3 第一层卷积层:2.4 池化层:2.5 全连接+softmax层:2.6 训练方案3 实现3.1 sentence部分3.2 filters部分3.3 featuremaps部分3.4 1max部分3.5 concat1max部分3.6 关键代码4 实现效果4.1 测试英文情感分类效果4.2 测试中文情感分类效果5 调参实验结论
深度学习框架Pytroch系列注:大家觉得博客好的话,别忘了点赞收藏呀,本人每周都会更新关于人工智能和大数据相关的内容,内容多为原创,Python Java Scala SQL 代码,CV NLP 推荐系统等,Spark Flink Kafka Hbase Hive Flume等等~写的都是纯干货,各种顶会的论文解读,一起进步。 这个系列主要和大家分享深度学习框架Pytorch的各种api,从基础
1 仓库使用说明仓库地址:https://github.com/lxztju/pytorch_classification/tree/v1这是一个基于pytorch框架的深度学习分类网络的仓库,通过在cfg文件中配置网络类型及训练参数,训练数据,模型保存路径等。支持以下分类模型:from models import Resnet50, Resnet101, Resnext101_32x8d,Res
首先来看一下模型结构。 这是LSTM+Attention结构在aspect-level情感分类最早的应用。模型比较简单,输入是sentence和特定aspect,输出是sentence在这个aspect下的情感极性。我们先将Word Respresentation和Aspect Embedding连接后输入到LSTM得到隐藏向量,再将隐藏向量和Aspect Embedding连接后做一次atten
# PyTorch LSTM情感分类入门指南 在最近几年,情感分析在自然语言处理(NLP)中不断增长的重要性。这篇文章将帮助你理解如何使用PyTorch实现LSTM(长短时记忆网络)来进行情感分类。以下是整个流程的概述。 ## 整体流程 | 步骤 | 描述 | | ---- | ---- | | 1 | 数据准备:加载和预处理数据集 | | 2 | 构建LSTM模型:定义模型结构 | | 3
原创 10月前
34阅读
文本情感分类1. 案例介绍为了对前面的word embedding这种常用的文本向量化的方法进行巩固,这里完成一个文本情感分类的案例现在有一个经典的数据集IMDB数据集,地址:http://ai.stanford.edu/~amaas/data/sentiment/,这是一份包含了5万条流行电影的评论数据,其中训练集25000条,测试集25000条。数据格式如下:下图左边为名称,其中名称包含两部分
文章目录0 项目说明1 研究目的2 研究方法3 研究结论4 项目流程4.1 获取微博文本4.2 SVM初步分类4.3 使用朴素贝叶斯分类4.4 AdaBoost4.4.1 二分类AdaBoost4.4.2 多分类AdaBoost4.4.2.1 AdaBoost.SAMME4.4.2.2 AdaBoost.SAMME.R5 论文概览6 项目源码 0 项目说明基于机器学习的情感分类与分析算法设计与实
# PyTorch IMDB 情感分类教程 在这篇文章中,我们将一起学习如何使用 PyTorch 实现 IMDB 数据集的情感分类任务。这个任务旨在训练一个模型,能够自动识别影评的情感是积极还是消极。以下是整个流程的概述以及每个步骤的详细解析。 ## 流程概述 以下是实施流程的步骤: | 步骤 | 描述
原创 10月前
162阅读
1.背景介绍情感分析和文本处理技术在现代自然语言处理领域具有重要的应用价值。PyTorch是一个流行的深度学习框架,它提供了一系列高效的API来实现各种自然语言处理任务,包括情感分析和文本处理。在本文中,我们将深入了解PyTorch中的情感分析和文本处理技术,涵盖了背景介绍、核心概念与联系、核心算法原理和具体操作步骤、数学模型公式详细讲解、具体最佳实践:代码实例和详细解释说明、实际应用场景、工具和
一.数据集下载链接: https://pan.baidu.com/s/1_7blbYJc0ouCGmqe8kBnTw 提取码: c6ex 复制这段内容后打开百度网盘手机App,操作更方便哦二.训练模型1.定义数据初始化import torchvision.transforms as transforms image_size=(224,224) # data_transforms=transfor
这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 原文 |  Thursday, October 28, 2021Posted by Dana Alon and Jeongwoo Ko, Software Engineers, Google Research 情绪是社会互动的一个关键方面,影响着人们的行为方式,塑造着人际关系。这在语言方面尤
转载 2024-08-13 11:56:06
57阅读
序因女朋友毕业设计,涉及到自然语言处理,所以笔者简单研究下了python的两个做自然语言处理的模块,如有错误之处欢迎大家留言。本文主要内容:使用自然语言处理的几个模块简单实现对FaceBook用户评论做情感极性分析,不做过多介绍。本文受众:没写过爬虫的萌新。入门0.准备工作需要准备的东西: Python2.7、一个IDE或者随便什么文本编辑工具。安装所需要的模块.技术部已经研究决定了,你来写爬虫。
1 textCNN原理textCNN最早在2014年由纽约大学的Yoon Kim提出(作者就他自己一个人),论文题目Convolutional Neural Networks for Sentence Classification,在文中作者用精炼的语句介绍了使用卷积神经网络进行文本分类任务的原理和网络结构,并用7个数据集证明了模型的泛化能力。如下图所示是textCNN与其他模型在MR,SST-1
目录前言1. 数据处理2. Bert3. 模型训练4. 模型测试 前言1. 数据处理def load_data(args, path, tokenizer): classes = ['pos', 'neg'] def process(flag): tokens = [] labels = [] seqs = []
转载 8月前
49阅读
文章目录准备数据搭建模型实现细节训练模型用户输入完整代码 在之前的笔记中,我们设法使用RNNs和 Bag of Tricks for Efficient Text Classification中的FastText模型实现了约85%的测试准确率。在这篇笔记中,我们将使用卷积神经网络(CNN)进行情感分析,实现 Convolutional Neural Networks for Sentence
     本文转自公众号“纸鱼AI”,该公众号专注于AI竞赛与前沿研究。作者为中国科学技术大学的linhw。本文是刚刚结束的CCF BDCI的新闻情感分类的方案分享,代码已经开源,希望对NLP感兴趣的朋友带来帮助。写在前面 比赛的内容是互联网的新闻情感分析。给定新闻标题和新闻的内容,然后需要我们设计一个方案对新闻的情感进行分类,判断新闻是消极的,积极的还是中立的。
# PyTorch LSTM 情感分类详解 在自然语言处理(NLP)领域,情感分类是一项重要的任务,尤其是分析客户反馈、社交媒体帖子等。长短期记忆(LSTM)网络因其在处理序列数据中的优势,是该任务的热门选择。本文将介绍如何使用PyTorch实现LSTM模型进行情感分类代码示例将帮助你更好地理解这一过程。 ## LSTM 简介 LSTM是一种特殊的循环神经网络(RNN),它能够有效地捕捉长
原创 10月前
218阅读
  • 1
  • 2
  • 3
  • 4
  • 5