参考: https://huggingface.co/docstransformer库 介绍使用群体:寻找使用、研究或者继承大规模的Tranformer模型的机器学习研究者和教育者想微调模型服务于他们产品的动手实践就业人员想去下载预训练模型,解决特定机器学习任务的工程师两个主要目标:尽可能见到迅速上手(只有3个标准类,配置,模型,预处理类。两个API,pipeline使用模型,trainer训练和
GCN模型源码 pytorch分享与分析 在图神经网络领域,GCN(Graph Convolutional Network)模型因其在处理图结构数据方面的高效性,被广泛应用于社交网络、知识图谱和推荐系统等多个领域。使用 PyTorch 实现 GCN 模型,可以帮助我们更好地理解图数据的特征提取与学习过程。接下来,将对 GCN 模型的源码进行详细解析,并分享一些实用的性能优化方法。 ### 背景
原创 5月前
37阅读
# GCN模型PyTorch中的实现 图卷积网络(GCN)是一种在图结构数据上进行深度学习的有效方法。在诸如社交网络、知识图谱、推荐系统等领域,GCN的应用越来越受到关注。本文将通过PyTorch实现一个基本的GCN模型,并提供一个简单的代码示例,帮助读者更好地理解GCN的基础知识和使用方法。 ## 1. 什么是GCN? 图卷积网络(GCN)是由Thomas Kipf和Max Wellin
原创 10月前
76阅读
上一篇博客学习了如何搭建Inception网络,这篇博客主要讲述如何利用pytorch搭建ResNets网络。上一篇博客中遗留了一个问题,就是1*1卷积核的作用,第一个作用是减少参数,第二个作用是压缩通道数,减少计算量。理论上,随着网络深度的加深,训练应该越来越好,但是,如果没有残差网络,深度越深意味着用优化算法越难计算,ResNets网络模型优点在于它能够训练深层次的网络模型,并且有助于解决梯度
论文原始链接代码知乎主页1:摘要实时准确的交通预测在智能交通系统中城市交通规划,交通管理和交通控制起着重要的作用和意义。然而,由于城市道路网络拓扑结构的约束和时间的动态变化规律,流量预测一直被认为是一个科学问题,即:空间依赖和时间依赖。为了捕获时空间依赖性,本文提出了T-GCN(temporal graph convolutional network),模型融合了图卷积网络(GCN)和门控递归单元
转载 2024-07-25 20:21:20
169阅读
Pytorch自带一个PyG的图神经网络库,和构建卷积神经网络类似。不同于卷积神经网络仅需重构__init__( )和forward( )两个函数,PyTorch必须额外重构propagate( )和message( )函数。一、环境构建        ①安装torch_geometric包。pip install torch_geometric 
Google Cloud Messaging(GCM)简介与基本使用官方文档参考:https://developers.google.com/cloud-messaging/gcmGCM简介Google Cloud Messaging (GCM)是Google提供的服务器与终端进行消息传递的轻量级解决方案,支持客户端与服务器的双向传递,可实现push下发、即时通讯等功能。GCM使用HTTP或XMP
GCN代码详解-pytorch版本1 GCN基本介绍2 代码解析2.1 导入数据2.2 GCN模型框架2.3 评估与训练参考资料 写在前面… 在研究生的工作中使用到了图神经网络,所以平时会看一些与图神经网络相关的论文和代码。写这个系列的目的是为了帮助自己再理一遍算法的基本思想和流程,如果同时也能对其他人提供帮助是极好的~博主也是在学习过程中,有些地方有误还请大家批评指正!github: http
一、代码结构总览layers:定义了模块如何计算卷积models:定义了模型traintrain:包含了模型训练信息utils:定义了加载数据等工具性的函数 二、数据集结构及内容论文中所使用的数据集合是Cora数据集,总共有三部分构成:cora.content:包含论文信息;                &
转载 2023-08-30 22:46:22
1229阅读
注意力机制的核心重点就是让网络关注到它更需要关注的地方 。当我们使用卷积神经网络去处理图片的时候, 我们会更希望卷积神经网络去注意应该注意的地方,而不是什么都关注 ,我们不可能手动去调节需要注意的地方,这个时候,如何让卷积神经网络去自适应的注意重要的物体变得极为重要。注意力机制 就是实现网络自适应注意的一个方式。一般而言,注意力机制可以分为通道注意力机制,空间注意力机制,以及二者的结合。&nbsp
转载 2023-08-22 21:40:38
138阅读
# 使用PyTorch复现图卷积网络(GCN) ## 引言 在图数据迅速增长的今天,图神经网络(GNN)成为了机器学习和深度学习研究的重要方向。其中,图卷积网络(GCN)作为一种基础网络模型,已被广泛用于节点分类、图分类等任务。本文将利用PyTorch复现GCN,并通过简单代码示例帮助读者理解其基本概念及实现方式。 ## 什么是图卷积网络(GCNGCN的基本思想是将卷积操作推广到非结构
原创 2024-10-22 04:46:14
126阅读
# 实现 GCN KNN PyTorch ## 介绍 在这篇文章中,我将教你如何使用 PyTorch 实现 GCN(Graph Convolutional Network) KNN(K-Nearest Neighbors)模型GCN 是一种用于图数据的半监督学习方法,它能够对节点进行分类和属性预测。KNN 则是一种无监督学习方法,用于寻找样本之间的相似性。通过结合这两种方法,我们可以进一步提升
原创 2023-08-30 15:00:31
403阅读
# 如何实现“GCN实现pytorch” ## 流程图 ```mermaid flowchart TD A(准备数据) --> B(构建GCN模型) B --> C(定义损失函数和优化器) C --> D(训练模型) D --> E(评估模型) ``` ## 状态图 ```mermaid stateDiagram [*] --> 数据准备 数
原创 2024-02-27 05:33:44
72阅读
# PyTorch实现GCN ## 流程概述 下面是实现GCN的整个流程: | 步骤 | 描述 | | --- | --- | | 1. 数据准备 | 加载数据集,切分数据集为训练集和测试集,并进行必要的预处理 | | 2. 构建图网络 | 定义GCN模型的网络结构,包括输入层、隐藏层和输出层 | | 3. 训练模型 | 使用训练集对GCN模型进行训练 | | 4. 评估模型 | 使用测试集
原创 2023-07-29 13:58:41
357阅读
# PyTorch中的图卷积网络(GCN)简介 图卷积网络(GCN)是一种出色的图结构数据学习模型,广泛应用于社交网络分析、推荐系统和生物信息学等领域。本文旨在为您介绍如何使用PyTorch实现GCN,并通过代码示例进行演示。我们将创建一个简单的GCN模型,应用于节点分类任务。 ## GCN的基本原理 GCN的核心思想是通过利用节点的邻居信息来增强节点的表示。与传统的卷积神经网络不同,GCN
原创 2024-10-04 03:50:00
254阅读
# 使用PyTorch搭建图卷积网络(GCN) 图卷积网络(GCN)是一种用于图结构数据分析的深度学习模型。它通过图的结构信息在节点之间传播特征,广泛应用于社交网络、推荐系统和生物信息学等领域。本文将介绍如何使用PyTorch实现GCN,并附带相应的代码示例,同时对GCN的基本原理进行简单讲解。 ## GCN的原理 GCN的核心思想是通过聚合邻居节点的特征来更新节点自身的特征。具体而言,对于
原创 9月前
350阅读
# 使用 PyTorch 实现图卷积网络 (GCN) ## 一、概述 图卷积网络(GCN)是一种应用于图结构数据的深度学习框架,广泛用于社交网络、推荐系统、分子图等领域。本文将利用 PyTorch 来实现一个简单的 GCN,并逐步指导你完成这个过程。 ## 二、流程概述 以下是实现 GCN 的基本步骤: | 步骤 | 描述 | |
原创 2024-10-28 05:42:56
159阅读
目录1.引入 2 环境配置3 代码分析4 模型搭建前言:学习图卷积刚入门,看了一篇GNN开山之作,而后看了最开始的四代GCN,每一代都在上代上有所更新,大致明白了GCN的发展以及原理,这篇论文是这个系列最后一篇,也是这篇论文中出现了现在GCN的逐层传播公式,后续最新的图网络都是在这个基础上进行更新,个人觉得这四篇论文对图网络感兴趣的朋友入门还是很有帮助的。这篇文章主要是针对最终得出来的公
转载 2023-08-08 13:42:31
129阅读
关于GCN的相关概念及其解释 图数据的特征性质  图像数据是一种特殊的图数据,图像数据是标准的2D网格结构图数据。图像数据的CNN卷积神经网络算法不能直接用在图数据上,原因是图数据具有以下特殊性。节点分布不均匀:图像数据及网格数据诶个节点只有4个邻接点,因此可以定义均匀的卷积操作,但是图数据节点的度数可以任意变化,即邻节点不确定,因此无法直接卷积。排列不
转载 2023-07-11 20:21:16
337阅读
本文为gcnPyTorch版本pygcn代码的注释解析(代码地址),也作为学习PyTorch时的一个实例加深对PyTorch API的理解。模型代码一般分为下面几个关键步骤:数据预处理搭建模型定义损失函数训练与测试其中代码量最大的是前两步,数据预处理包括如何从文件中读取数据,并存储成深度学习框架可处理的tensor类型,构建训练集、测试集和验证集等;搭建模型则是核心,需要对模型内部的运算流程有详
转载 2023-09-27 16:46:03
372阅读
  • 1
  • 2
  • 3
  • 4
  • 5