根据之前的文章我们可以很容易的搭建出多层神经网络,下面我们以其中一种方式为例实现多层神经网络,推荐使用jupyter notebook引入包其中:sklearn.datasets:用于生成数据集 sklearn.neural_network.MLPClassifier:用于生成数据集 numpy:数据批处理 matplotlib:画图 warnings.simplefilter:简单过滤器from
目录I. 前言II. 多步预测2.1 直接多输出2.2 单步滚动预测2.3 多模型单步预测2.4 多模型滚动预测2.5 seq2seq预测III. 源码及数据 I. 前言在PyTorch搭建LSTM实现多变量多步长时间序列预测(负荷预测)中我简单实现了一下LSTM的多变量多步预测,其中LSTM搭建如下:class LSTM(nn.Module): def __init__(self, i
Pytorch实现多层lstmPytorch实现多层lstmPytorch实现多层lstm
原创 2021-08-02 15:00:42
4026阅读
目录I. 前言II. 多模型单步预测III. 代码实现3.1 数据处理3.2 模型搭建3.3 模型训练/测试3.4 实验结果IV. 源码及数据 II. 多模型单步预测所谓多模型单步预测:比如前10个预测后3个,那么我们可以训练三个模型分别根据[1…10]预测[11]、[12]以及[13]。也就是说如果需要进行n步预测,那么我们一共需要训练n个LSTM模型,缺点很突出。III. 代码实现3.1 数
LSTM:nn.LSTM(input_size, hidden_size, num_layers=1, nonlinearity=tanh, bias=True, batch_first=False, dropout=0, bidirectional=False) input_size:表示输入 xt 的特征维度 hidden_size:表示输出的特征维度
直接看模型部分代码。class BiLSTM_Attention(nn.Module): def __init__(self, vocab_size, embedding_dim, num_hiddens, num_layers): super(BiLSTM_Attention, self).__init__() # embedding之后的shape: t
目录1.机器翻译之Seq2Seq介绍2.基于Pytorch的Seq2Seq实现2.1数据准备2.2模型建立2.3训练1.机器翻译之Seq2Seq介绍Seq2Seq模型是一个序列到序列的模型,在NLP中被广泛应用于翻译。其网络的模型结构大致如下:在机器翻译中,其将需要被翻译的语言序列在源端(编码器)经过RNN模型最终压缩为一个上下文向量(C),接着目标端(解码器)对上下文向量进行解码,将器输出分类映
   在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率。这次换一种神经网络(多层神经网络)来进行训练和测试。 1、获取MNIST数据  MNIST数据集只要一行代码就可以获取的到,非常方便。关于MNIST的基本信息可以参考我的上一篇随笔。mnist = input_data.read_data_sets('./data/mnist',
摘要:作者早前提到了人们使用RNNs取得的显著成效,基本上这些都是使用了LSTMs。对于大多数任务,它们真的可以达到更好的效果!写了一堆方程式,LSTMs看起来很吓人。希望通过这篇文章中一步一步的剖析,能更好理解它们。 递归神经网络人类并不是每时每刻都从头开始思考。正如你阅读这篇文章的时候,你是在理解前面词语的基础上来理解每个词。你不会丢弃所有已知的信息而从头开始思考。你的思想具有持续性。传统的
多层LSTM
原创 2021-08-02 13:48:46
466阅读
LSMT层可以在troch.nn模块中找到LSTMlstm = torch.nn.LSTM(*paramsters)1、__init__方法 首先对nn.LSTM类进行实例化,需要传入的参数如下图所示: 一般我们关注这4个: input_size表示输入的每个token的维度,也可以理解为一个word的embedding的维度。 hidden_size表示隐藏层也就是记忆单元C的维度,也可以理解
本系列基本不讲数学原理,只从代码角度去让读者们利用最简洁的Python代码实现深度学习方法。多层感知机多层感知机就是指在神经网络里面加一个或多个非线性的隐藏层 ,让其能够更加普遍的处理函数关系。通用近似定理表明,就算只有一个隐藏层的神经网络,也能够拟合这个世界上所有的函数(当然只是理论,具体实现效果不一定好,因为你很难找到每种函数对应的神经元需要多少个) 多层感知机和其他机器学习算法一样
多层全连接神经网络实现MNIST手写数字分类1 简单的三层全连接神经网络2 添加激活函数3 添加批标准化4 训练网络5 结论参考资料 先用PyTorch实现最简单的三层全连接神经网络,然后添加激活层查看实验结果,最后再加上批标准化验证是否能够更加有效。1 简单的三层全连接神经网络对于这个三层网络,需要传递进去的参数包括:输入的维度,第一次网络的神经元个数,第二层网络神经元的个数,以及第三层网络(
一、LSTM网络long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层LSTM也有与RNN相似的循环结构,但是循环模块中不再是简单的网络,而是比较复杂的网络单 元。LSTM的循环模块主要有4个单元,以比较复杂的方式进行
目录程序简介程序/数据集下载代码分析程序简介程序调用tensorflow.keras搭建了一个简单长短记忆型网络(LSTM),以上证指数为例,对数据进行标准化处理,输入5天的'收盘价', '最高价', '最低价','开盘价',输出1天的'收盘价',利用训练集训练网络后,输出测试集的MAE长短记忆型网络(LSTM):是一种改进之后的循环神经网络,可以解决RNN无法处理长距离的依赖的问题。程序/数据集
转载 2023-11-29 21:29:48
14阅读
导读:堆叠式LSTM属于深度学习,通过添加网络的深度,提高训练的效率,获得更高的准确性。文中介绍了堆叠式LSTM的架构和实现方法在堆叠式LSTM中,层与层的输数出通过return_sequences = True参数修改成3D数据,以便供下一层网络使用。为什么要增加深度?堆叠LSTM隐藏层使模型更深入,更准确地将描述作为深度学习技术获得。神经网络的深度通常归因于该方法在广泛的具有挑战性的预测问题上
转载 2024-03-17 19:09:13
62阅读
LSTM的参数解释LSTM总共有7个参数:前面3个是必须输入的1:input_size: 输入特征维数,即每一行输入元素的个数。输入是一维向量。如:[1,2,3,4,5,6,7,8,9],input_size 就是92:hidden_size: 隐藏层状态的维数,即隐藏层节点的个数,这个和单层感知器的结构是类似的。这个维数值是自定义的,根据具体业务需要决定,如下图:input_size:就是输入层
转载 2023-08-06 13:59:19
485阅读
首先,我们定义好一个LSTM网络,然后给出一个句子,每个句子都有很多个词构成,每个词可以用一个词向量表示,这样一句话就可以形成一个序列,我们将这个序列依次传入LSTM,然后就可以得到与序列等长的输出,每个输出都表示的是一种词性,比如名词,动词之类的,还是一种分类问题,每个单词都属于几种词性中的一种。我们可以思考一下为什么LSTM在这个问题里面起着重要的作用。如果我们完全孤立的对一个词做词性的判断这
1.为什么要用pack_padded_sequence在使用深度学习特别是RNN(LSTM/GRU)进行序列分析时,经常会遇到序列长度不一样的情况,此时就需要对同一个batch中的不同序列使用padding的方式进行序列长度对齐(可以都填充为batch中最长序列的长度,也可以设置一个统一的长度,对所有序列长截短填),方便将训练数据输入到LSTM模型进行训练,填充后一个batch的序列可以统一处理,
转载 2023-08-05 07:32:56
408阅读
最近阅读了pytorchlstm的源代码,发现其中有很多值得学习的地方。 首先查看pytorch当中相应的定义\begin{array}{ll} \\ i_t = \sigma(W_{ii} x_t + b_{ii} + W_{hi} h_{t-1} + b_{hi}) \\ f_t = \sigma(W_{if} x_t + b_{if} + W
转载 2023-08-10 13:27:58
245阅读
  • 1
  • 2
  • 3
  • 4
  • 5