文章目录conv层:pooling 层:BatchNorm层矩阵运算dropout层relu层interpolate实现插值和上采样自定义函数为nn.modulemobilenet v1- depthwise层residual模块fire_moudle模块mobilenet v2 InvertedResidual 模块:depthwise conv实现初始化权重方法一:初始化权重方法二:mobi
转载 1月前
43阅读
根据之前的文章我们可以很容易的搭建出多层神经网络,下面我们以其中一种方式为例实现多层神经网络,推荐使用jupyter notebook引入包其中:sklearn.datasets:用于生成数据集 sklearn.neural_network.MLPClassifier:用于生成数据集 numpy:数据批处理 matplotlib:画图 warnings.simplefilter:简单过滤器from
前言数据来自于kaggle比赛Ventilator Pressure Prediction,数据背景介绍请看官方说明 代码来自于当前排名第一的团队Shujun, Kha, Zidmie, Gilles, B,他们在获得第一名的成绩以后发了一篇博客,提供了他们在比赛中使用的模型,包括LSTM CNN transformer、PID Controller Matching、Simple LSTM 该篇
 一、RNN的长期依赖问题在上篇文章中介绍的循环神经网络RNN在训练的过程中会有长期依赖的问题,这是由于RNN模型在训练时会遇到梯度消失(大部分情况)或者梯度爆炸(很少,但对优化过程影响很大)的问题。对于梯度爆炸是很好解决的,可以使用梯度修剪(Gradient Clipping),即当梯度向量大于某个阈值,缩放梯度向量。但对于梯度消失是很难解决的。所谓的梯度消失或梯度爆炸是指训练时计算和
1.双向递归神经网络简介 双向递归神经网络(Bidirectional Recurrent Neural Networks, Bi-RNN),是由Schuster和Paliwal于1997年首次提出的,和LSTM是在同一年被提出的。Bi-RNN的主要目标是增加RNN可利用的信息。RNN无法利用某个历史输入的未来信息,Bi-RNN则正好相反,它可以同时使用时序数据中某个输入的历史及未来数据。 Bi
转载 1月前
70阅读
目录I. 前言II. 多步预测2.1 直接多输出2.2 单步滚动预测2.3 多模型单步预测2.4 多模型滚动预测2.5 seq2seq预测III. 源码及数据 I. 前言在PyTorch搭建LSTM实现多变量多步长时间序列预测(负荷预测)中我简单实现了一下LSTM的多变量多步预测,其中LSTM搭建如下:class LSTM(nn.Module): def __init__(self, i
目录前言1. 数据集1.1 下载数据集并处理1.2 将数据集分为source和target1.3 定义词汇类1.4 获取训练集2. 定义模型2.1 导入相关工具包2.2. 定义Encoder模型2.3.定义Decoder模型2.4.定义seq2seq模型2.5.定义loss3.训练函数4.预测函数5.测试5.1定义参数5.2.训练5.3.预测 前言这两天学习了RNN,就想实现一下机器翻译,如果有
lstm里,多层之间传递的是输出ht ,同一层内传递的细胞状态(即隐层状态)看pytorch官网对应的参数nn.lstm(*args,**kwargs),默认传参就是官网文档的列出的列表传过去。对于后面有默认值(官网在参数解释第一句就有if啥的,一般传参就要带赋值号了。)官网案例对应的就是前三个。input_size,hidden_size,num_layersParmerters:input_
Pytorch实现多层lstmPytorch实现多层lstmPytorch实现多层lstm
原创 2021-08-02 15:00:42
3884阅读
目录I. 前言II. 多模型单步预测III. 代码实现3.1 数据处理3.2 模型搭建3.3 模型训练/测试3.4 实验结果IV. 源码及数据 II. 多模型单步预测所谓多模型单步预测:比如前10个预测后3个,那么我们可以训练三个模型分别根据[1…10]预测[11]、[12]以及[13]。也就是说如果需要进行n步预测,那么我们一共需要训练n个LSTM模型,缺点很突出。III. 代码实现3.1 数
直接看模型部分代码。class BiLSTM_Attention(nn.Module): def __init__(self, vocab_size, embedding_dim, num_hiddens, num_layers): super(BiLSTM_Attention, self).__init__() # embedding之后的shape: t
LSTM:nn.LSTM(input_size, hidden_size, num_layers=1, nonlinearity=tanh, bias=True, batch_first=False, dropout=0, bidirectional=False) input_size:表示输入 xt 的特征维度 hidden_size:表示输出的特征维度
整个个专栏记录一下深度学习的相关文章(一)认识深度学习(二)机器学习应用策略(三)卷积神经网络(四)序列模型(五)pytorch从零实现手写数字识别(六)认识NLP,RNN实现文本情感分析(六)经典试题整合循环神经网络tokenization:分词 token:具体的词常见工具jiebaTHULAC(不推荐)分词方法:句子转为词语句子转换为单个字N-gram准备词语特征的方法,N代表能够一起使用的
目录1.机器翻译之Seq2Seq介绍2.基于Pytorch的Seq2Seq实现2.1数据准备2.2模型建立2.3训练1.机器翻译之Seq2Seq介绍Seq2Seq模型是一个序列到序列的模型,在NLP中被广泛应用于翻译。其网络的模型结构大致如下:在机器翻译中,其将需要被翻译的语言序列在源端(编码器)经过RNN模型最终压缩为一个上下文向量(C),接着目标端(解码器)对上下文向量进行解码,将器输出分类映
1.52.LSTM 1.52.1.LSTM简介 1.52.2.RNN单元的内部结构 1.52.3.LSTM单元的内部结构 1.52.4.原理 1.52.5.遗忘门 1.52.6.输入门 1.52.7.输出门 1.52.8.Intuitive Pipeline 1.52.9.LSTM变体GRU 1.52.10.LSTM变体FC-LSTM 1.52.11.Pytorch LSTM API介绍 1.52
转载 1月前
78阅读
长短期记忆(LSTM)网络已被广泛用于解决各种顺序任务。让我们了解这些网络如何工作以及如何实施它们。就像我们一样,循环神经网络(RNN)也可能很健忘。这种与短期记忆的斗争导致 RNN 在大多数任务中失去有效性。不过,不用担心,长短期记忆网络 (LSTM) 具有出色的记忆力,可以记住普通 RNN 无法记住的信息!LSTM 是 RNN 的一种特殊变体,因此掌握 RNN 相关的概念将极大地帮助您理解本文
栗子 如今,语言模型的世界,几乎被Transformer/BERT占领了。但如果回到2017年,把轰动世界的论文Attention Is All You Need从时间线上抹掉呢?多头注意力不存在了,只剩下原始的LSTM,自然语言处理又会朝怎样的方向进化? 机器学习大佬Stephen Merity (Smerity) 突发奇想,强行回到过去,依靠简单质朴的LS
   在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率。这次换一种神经网络(多层神经网络)来进行训练和测试。 1、获取MNIST数据  MNIST数据集只要一行代码就可以获取的到,非常方便。关于MNIST的基本信息可以参考我的上一篇随笔。mnist = input_data.read_data_sets('./data/mnist',
本文主要从大致步骤上讲述如何从零开始构建一个网络,仅提供一个思路,具体实现以实际情况为准。一、构建网络class 网络模型(nn.Module): #----初始化函数----# #主要用来构建网络单元,类似于类定义 def __init__(self,需要传入的参数列表): super(网络模型,self).__init__() #---
多层LSTM
原创 2021-08-02 13:48:46
407阅读
  • 1
  • 2
  • 3
  • 4
  • 5