[PyTorch] 笔记01:张量及基本操作Outline张量
基础语法Torch张量转化为NumPy数组NumPy数组转化为Torch张量arange,range,linspace基本操作
运算重排部分数据选择扩张与拼接1 张量Tensor(张量)类似于NumPy的ndarrayndarray 对象是用于存放同类型元素的多维数组。numpy.array(object, dtype =
转载
2024-04-17 11:18:59
48阅读
一、张量tensor张量的三个特征:秩、轴、形状张量的秩是指索引的个数,轴是指每一个维度的最大的索引的值,张量的形状提供了维度和索引的数量关系。经常需要对张量进行重塑t.reshape(1,9)利用上述函数可以将张量按任意想要的形状进行重塑下面我们考虑具体的情况,将张量带入CNN的输入中这里的张量的秩为4,即[B,C,H,W],其中后两个维度作为每一个像素的长和宽的索引,第三个维度作为RBG或者灰
转载
2023-10-26 11:26:48
108阅读
前言PyTorch 于 2016 年首次推出。在 PyTorch 之前,深度学习框架通常专注于速度或可用性,但不能同时关注两者。PyTorch将这两者相结合,提供了一种命令式和 Python编程风格,支持将代码作为模型,使调试变得容易,支持 GPU 等硬件加速器。PyTorch 是一个 Python 库,它通过自动微分和 GPU 加速执行动态张量计算。它的大部分核心都是用 C++ 编写的,这也是
转载
2023-09-27 22:27:49
298阅读
张量对象张量(Tensor)是一种特殊结构,出于并行计算的需要设计,可在GPU等硬件加速器上运行。类似于数组和矩阵,用于对模型的输入输出,模型参数进行编码。 Pytorch中的Tensor类似于Numpy中的ndarray,二者可相互转换,且共享底层内存,可理解为同一数据引用的不同表现形式。修改其中之一会同时修改另一方。张量初始化可由现有数据对象创建张量,或根据维度创建:data = [[1, 2
转载
2023-08-21 09:16:40
162阅读
张量的操作:拼接、切分、索引和变换1张量的拼接与切分1.1 torch.cat(tensors,dim=0,out=None) 功能:将张量按维度dim进行拼接tensors:张量序列dim:要拼接的维度1.2 torch.stack(tensors,dim=0,out=None)功能:在新创建的维度dim上进行拼接tensors:张量序列dim:要拼接的维度区别:cat不会扩展张量的
转载
2024-02-23 18:51:53
101阅读
Tensors 张量 类似于NumPy的ndarrays,可以使用GPU进行计算。概念:张量(Tensor)是一个定义在一些向量空间和一些对偶空间的笛卡儿积上的多重线性映射,其坐标是|n|维空间内,有|n|个分量的一种量, 其中每个分量都是坐标的函数, 而在坐标变换时,这些分量也依照某些规则作线性变换。(1)r 称为该张量的秩或阶(与矩阵的秩和阶均无关系)。(2)在同构的意义下,第零阶
转载
2024-02-23 14:27:29
22阅读
PyTorch框架学习三——张量操作一、拼接1.torch.cat()2.torch.stack()二、切分1.torch.chunk()2.torch.split()三、索引1.torch.index_select()2.torch.masked_select()四、变换1.torch.reshape()2.torch.transpace()3.torch.t()4.torch.squeeze
转载
2024-06-24 21:00:13
110阅读
文章目录PyTorch 基础 : 张量张量(Tensor)基本类型Numpy转换设备间转换初始化常用方法 PyTorch 基础 : 张量在第一章中我们已经通过官方的入门教程对PyTorch有了一定的了解,这一章会详细介绍PyTorch 里面的基础知识。 全部掌握了这些基础知识,在后面的应用中才能更加快速进阶,如果你已经对PyTorch有一定的了解,可以跳过此章# 首先要引入相关的包
import
转载
2024-03-12 22:12:45
57阅读
Tensor是PyTorch中最基础的概念,其参与了整个运算过程,包含属性,如data, device, dtype等,tensor的基本创建方法,如直接创建、依数值创建和依概率分布创建等。 1、VariableVariable是0.4.0之前版本的一种数据类型。下面是variable的一些属性torch.autograd.Variable.data #就是这张量
torch.autog
转载
2024-05-15 09:28:35
83阅读
Pytorch教程之张量说明:本文内容全部是搬运的,仅仅是记录一下,更多详细内容可以参考pytorch教程。1、简介Tensor中文翻译张量,是一个词不达意的名字。张量在不同学科中有不同的意义,在深度学习中张量表示的是一个多维数组,它是标量、向量、矩阵的拓展。标量是零维张量,向量是一维张量,矩阵是二维张量。 tensor之于pytorch等同于ndarray之于numpy,它是pytorch中最核
转载
2023-10-02 08:51:40
87阅读
Pytorch基础——张量1、认识张量2、创建torch数据3、张量的形状4、张量的索引、切片5、张量形状的改变6、张量的广播机制7、如何将numpy转换成Tensors8、常用操作8.1、torch.cat()8.2、torch.squeeze、torch.unsqueeze8.3、torch.view 1、认识张量Tensors(张量) Tensors张量,与numpy中的ndarray类似
转载
2023-09-03 13:05:29
86阅读
张量(Tensor)简单介绍Pytorch最基本的操作对象是Tensor(张量),它表示一个多维矩阵,张量类似于NumPy的ndarrays ,张量可以在GPU上使用以加速计算。生成数据的常用方法以及基本数据类型:构造一个随机初始化的矩阵torch.rand全 0 矩阵torch.zeros全 1 矩阵orch.ones直接从数据构造张量torch.tensor 32位浮点型
转载
2023-09-17 00:02:30
88阅读
一、Tensora) 张量是torch的基础数据类型b) 张量的核心是坐标的改变不会改变自身性质。c) 0阶张量为标量(只有数值,没有方向的量),因为它不随坐标的变化发生改
转载
2023-06-25 16:21:54
794阅读
一、torch.tensor()函数生成张量:A = torch.tensor([1.0,1.0],[2,2])
A
#tensor([1.,1.],
# [2.,2.])查看张量的一些属性:A.shape() #张量的维度
#torch.Size([2,2])
A.size() #张量的形状
#torch.Size([2,2])
A.numel() #张量中元素的数量
#4在使用to
转载
2023-11-02 06:48:02
86阅读
PyTorch是什么?这是一个基于Python的科学计算包,其旨在服务两类场合:替代numpy发挥GPU潜能一个提供了高度灵活性和效率的深度学习实验性平台pytorch下的张量类似于numpy下的数组,并且张量也可用于在GPU上对程序进行加速Tensor的定义:torch.tensor(data, dtype=None, device=None, requires_grad=False)1、Ten
【Pytorch】张量张量(Tensor):张量是一个 n 维数组,是 Pytorch 中经常用到的一个数据类型,我们可以这样理解:一维张量等同于向量,二维张量等同于矩阵。创建张量:空张量:x = torch.empty(size)全0张量:# 创建一个指定形状的全0张量:
x = torch.zeros(size)
# 创建一个形状与给定张量相等的全0张量:
x = torch.zeros_li
转载
2023-09-22 12:01:56
121阅读
参考本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/linear_regression.py1.3 张量操作与线性回归张量的操作拼接torch.cat()
torch.cat(tensors, dim=0, out=None)功能:将张量按照 dim 维度进行拼接tensors: 张量序列dim: 要拼
转载
2024-07-20 07:44:09
32阅读
文章目录前言一、常见的Tensor类型1.标量(0D张量)2.向量(1D张量)3.矩阵(2D张量)4.3D张量及高维张量二、基本的张量操作1.创建张量2.张量数据的转换、初始化3.规则索引及切片4.无规则索引三、张量的维度变换1.Veiw函数调整形状2.维度增加和减少总结 前言我们已经接触过Numpy中的数组,在拓宽一步,其实numpy中的多维数组(ndarray)就是一个张量数据。张量(Ten
转载
2023-09-29 22:30:12
112阅读
Pytorch 基本概念了解基本概念,以及学习常用的几个函数。张量(Tensor)PyTorch 张量(Tensor),张量是PyTorch最基本的操作对象,英文名称为Tensor,它表示的是一个多维的矩阵。比如零维是一个点,一维就是向量,二维就是一般的矩阵,多维就相当于一个多维的数组,这和numpy是对应的,而且 Pytorch 的 Tensor 可以和 numpy 的ndarray相互转换,唯
转载
2023-10-20 15:14:23
89阅读
问题:关于Mysql 的分级输出问题情景:学校里面记录成绩,每个人的选课不一样,而且以后会添加课程,所以不需要把所有课程当作列。数据表里面数据如下图,使用姓名+课程作为联合主键(有些需求可能不需要联合主键)。本文以MySQL为基础,其他数据库会有些许语法不同。数据库表数据:处理后的结果(行转列):方法一:这里可以使用Max,也可以使用Sum;注意第二张图,当有学生的某科成绩缺失的时候,输出结果为N
转载
2023-05-23 14:03:05
537阅读