文章目录案例实战:新闻聚类分群1、导入相关库2、读取数据3、中文分词4、文本向
原创 2023-01-17 08:35:28
821阅读
Kmeans算法是最常用的聚类算法。 主要思想是:在给定K值K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。其训练数据的流程是:根据上面的流程图来实现具体代码: 数据集提取链接链接
转载 2023-05-26 11:34:53
172阅读
前言日常生活,从人脸识别、语音识别到搜索引擎,我们看到越来越多人工智能领域的算法逐渐走向落地。尽管全球每日新增数据量以PB或EB级别增长,但是大部分数据属于无标注甚至非结构化。所以相对于监督学习,不需要标注的无监督学习蕴含了巨大的潜力与价值。聚类算法KMeans是无监督学习的杰出代表之一。本文是记录自己过去学习KMeans算法的系统小结,将从“KMeans简介,优缺点与优化策略,结合EM算法解释
python的多元高斯生成起来好麻烦,所以只好用matlab先生成测试数据然后再进行测试了。kmeans的基本思想就是通过迭代的方法,更新不同类别的的数据均值,从而达到聚类的目的,因为需要先固定一个均值μiold,然后再通过梯度的方法更新μ值。这就天然的包含了EM的思想。kmeans对起始的均值设定比较敏感,因此并不能保证最终能够收敛到一个好的结果。而且考虑到它需要计算每个点到中心点的距离,计算复
转载 2023-06-19 13:41:59
174阅读
前言Kmeans是一种聚类算法,sklearn 也给出了其API,很方便我们调用,关于其API的操作但是我们知道Kmeans算法是基于距离(如欧式距离)作为评判指标进行聚类的,现实我们的需求千差万别,比如我们的项目可能需要一种新的指标来作为评判指标进行聚类,这时候就需要修改sklearn的部分源码来达到我们的目的注意本文的最终目的在于:分析如何根据自己的需求修改sklearn源码并加以利用的整个
转载 2023-11-28 13:22:04
60阅读
tensorflow基础暂不介绍Python 相关库的安装 在进入正式聚类实验之前,我们还需要配置计算及画图需要用到相关支持包。 安装 seaborn: pip install seaborn 安装 matplotlib: pip install matplotlib 安装 python3-tk: sudo
(一).算法概念K-Means算法是一种聚类分析(cluster analysis)的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。它的基本思想是,通过迭代寻找K个簇(Cluster)的一种划分方案,使得聚类结果对应的损失函数最小。其中,损失函数可以定义为各个样本距离所属簇中心点的误差平方:(二).具体步骤 通过迭代不断的划分簇更新聚类中心,直到每个点与
# 使用Python实现K-Means算法的指南 K-Means是一种常用的聚类算法,它可以将数据分成若干个不同的组。若你是一名刚入行的开发者,下面将带你逐步了解如何在Python实现K-Means算法。我们将首先概述整个流程,并在接下来的部分逐步解析每个步骤所涉及的代码。 ## K-Means算法实现流程 以下表格展示了实现K-Means算法的主要步骤: | 步骤 | 描
原创 9月前
58阅读
k-均值是一种基于形心得技术,首先从对象随机选择k个对象,每个对象代表簇的初始均值或中心。对剩下的每个对象,根据其与各个簇中心的欧式距离,将它分配到最相似的簇。然后,k-均值算法迭代地盖伞簇内变差。对于每个簇,它使用上次迭代分配到的该簇对象,计算新的均值。然后,使用更新的均值最为新的簇的中心,重新分配所有对象。迭代继续,知道分配稳定,即本轮形成的簇与前一轮形成的簇相同。k-均值通常对离群点比较敏
在应用聚类算法时,其挑战之一就是很难评估算法效果的好坏,也很难比较不同的算法的结果。下面我们来对已经学过K均值、凝聚聚类、DBSCAN等算法做下评估。用真实值评估聚类:有一些指标可用于评估聚类算法相对于真实聚类的结果,其中最重要的是调整rand指数(adjusted rand index,API)归一化互信息(normalized mutual information, NMI),二者都给出了定
聚类算法之DBSCAN算法介绍及实现1 DBSCAN介绍1.1 基本概念1.1.1 密度聚类1.1.2 DBSAN算法1.2 基本原理/算法流程1.3 评价2 DBSCAN算法实现2.1 DBSCAN API实现2.2 比较DBSCANK-means的实现效果 1 DBSCAN介绍1.1 基本概念1.1.1 密度聚类密度聚类也被称作“基于密度的聚类”(density-based cluster
有核心点,边缘点,局外点 核心点半径r范围内至少有k个点(包括自己) 边缘点不是核心点,但是它至少在某个核心点的范围内 其他点都是局外点
转载 2021-01-01 17:05:00
297阅读
2评论
DBSCAN方法及应用1.DBSCAN密度聚类简介DBSCAN 算法是一种基于密度的聚类算法:   1.聚类的时候不需要预先指定簇的个数   2.最终的簇的个数不确定DBSCAN算法将数据点分为三类:   1.核心点:在半径Eps内含有超过MinPts数目的点。   2.边界点:在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内的点。   3.噪音点:既不是核心点也不是边界点
原创 2023-05-31 10:45:49
141阅读
原标题:Kmeans算法的Python实现Kmeans聚类kmeansK-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。k个初始类聚类中心点的选取对聚类结果具有较大的影响,因为在该算法第一步是随机的选取任意k个对象作为初始聚类的中心,初始地代表一个簇。
上了斯坦福Andrew NG 课,把所有的练习用matlab 做完一遍之后感觉意犹未尽,因此决定用pyton 将课内算法逐一实现一遍,以加深理解,同时也避免自己成为调包侠,哈哈,话不多说,进入正题。 Kmeans 是一个经典的无监督聚类算法,算法内容比较容易理解。有兴趣的同学可以百度相关论文研读其内容,这里不再赘述。 Kmeans 算法流程如下: Input: -K (聚类数目,即所需分类的
k-means算法此次的作业是要求我们利用所学知识实现利用python实现k-means算法,首先我们先来简单的介绍一下k-means算法: k-means算法接受输入量k;然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类的对象相似度较高;而不同聚类的对象相似度较小。聚类相似度是利用各聚类对象的均值所获得一个“中心对象”来进行计算的。算法实现思路k-means算法是一种基于
转载 2023-08-11 22:14:29
84阅读
python实现kmeanskmeans++方法 一.kmeans聚类:基本方法流程1.首先随机初始化k个中心点2.将每个实例分配到与其最近的中心点,开成k个类3.更新中心点,计算每个类的平均中心点4.直到心点不再变化或变化不大或达到迭代次数优缺点:该方法简单,执行速度较快。但其对于离群点处理不是很好,这是可以去除离群点。kmeans聚类的主要缺点是
转载 2023-06-27 10:36:22
194阅读
1. 聚类K-means算法是一种常用的聚类算法,所谓的聚类就是指给定个样本的数据集,需要构造 个簇(类),使得这 2. K-means算法基本步骤随机初始化个点,作为聚类中心在第次迭代,对于每个样本点,选取距离最近的聚类中心,归为该类遍历一遍之后,更新聚类中心,其中更新规则为:聚类中心取当前类的平均值重复步骤2、3,直到满足迭代次数,或者聚类状态不发生改变3. 算法优化3.1 轮廓系数轮廓系
       声明:代码的运行环境为Python3。Python3与Python2在一些细节上会有所不同,希望广大读者注意。本博客以代码为主,代码中会有详细的注释。相关文章将会发布在我的个人博客专栏《Python从入门到深度学习》,欢迎大家关注~       K-Means算法、K-Means++算法以及Mean Sh
转载 2023-10-15 01:04:17
108阅读
1. K-Means算法是一种广泛使用的聚类算法。from sklearn.cluster import KMeansK-Means是聚焦于相似的无监督的算法,以距离作为数据对象间相似性度量的标准,即数据对象间的距离越小,则它们的相似性越高,则它们越有可能在同一个类。K值指的是把数据划分成多少个类别。算法步骤:随机设置K个特征空间内的点作为初始的聚类中心。对于其他每个点计算到K个中心的距离,未知的
转载 2023-06-21 22:34:56
156阅读
  • 1
  • 2
  • 3
  • 4
  • 5