# Python 高维聚类算法入门教程
在机器学习中,聚类是一种无监督学习方法,目的是将数据分组为彼此相似的集群。本文将为刚入行的小白介绍如何使用 Python 实现高维聚类算法,特别是 K-means 算法。以下是实施的步骤流程:
| 步骤 | 描述 | 代码示例 |
|------|---------------
原创
2024-10-28 06:11:23
77阅读
前言:这两天着手做毕设,在今年的研究生数学建模的基础上研究“大数据下多流形聚类分析”问题,导师要求我这周把每一个算法的实现对比一下效果展示给他看,表示今天google的搜索结果中没有找到诸如SSC的函数教程,又养成了不copy代码的习惯,那就自己从头开始学呗,刚好mathworks上面提供一篇详细的聚类分析的教程,特此翻译一下,希望自己和读者都能更好的咬文嚼字,以作为未来几天高维度数据matl
转载
2024-07-12 15:33:17
24阅读
k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对象没有任何先验知识,而分类过程为有监督过程,即存在有先验知识的训练数据集。k-means算法中的k代表类簇个数,means代表类簇内数据对象的均值(这种均值是一种对类簇中心的描述),因此,k-
转载
2023-08-23 20:58:07
272阅读
# Python一维聚类
在数据分析和机器学习领域,聚类是一种常用的技术,用于将数据分为具有相似特征的组。聚类分析有多种方法,其中一维聚类是其中一种简单但有效的方法。本文将介绍一维聚类的概念、原理和如何在Python中实现。
## 什么是一维聚类?
一维聚类是一种将数据点根据它们在一维空间上的位置进行分组的方法。在一维聚类中,我们只考虑数据点在一个维度上的值,忽略其他维度。这使得一维聚类非常
原创
2023-07-14 03:21:09
846阅读
# Python一维聚类
在数据分析和机器学习领域,聚类是一种常见的技术,用于将数据点分组到相似的簇中。而一维聚类则是在一维数据上进行聚类分析的方法。在本文中,我们将介绍如何使用Python进行一维聚类,并通过代码示例演示这一过程。
## 一维聚类算法
在一维数据上进行聚类可以帮助我们发现数据中的模式和趋势,进而做出更深入的分析。一维聚类的常见算法包括K均值聚类和层次聚类。K均值聚类是一种基
原创
2024-04-06 03:40:10
85阅读
# 使用 Python 进行一维聚类
在数据科学和机器学习领域,聚类是一种常用的无监督学习方法。它的目的是将数据分组(或称为“聚类”),使同一组内的数据点尽可能相似,而不同组之间的数据点尽可能不同。在这篇文章中,我们将介绍如何在 Python 中实现一维聚类,适合刚入行的小白。
## 实现流程概述
在开始编程之前,我们先了解整个流程。下面是实现一维聚类的步骤:
| 步骤 | 描述
划分聚类Kmeans原理(1)任意选择k个对象作为初始的簇中心;(2)根据距离(欧式距离)中心最近原则,将其他对象分配到相应类中;(3) 更新簇的质心,即重新计算每个簇中对象的平均值;(4) 重新分配所有对象,直到质心不再发生变化 调包实现import time
import pandas as pd
from sklearn import preprocessing
da
转载
2023-07-28 13:11:42
219阅读
聚类分析百度百科:聚类分析指将物理或抽象对象的集合分组为由类似的对象组成的多个类的分析过程。同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。方法——(还可直接用SPSS) 1. 系统聚类法(适用于数据量比较小的情况) 2. K-均值法:先把样品粗略分为K个初始类别,逐个分派样品到其最近均值的类中(通常用标准化数据计算欧式距离),重新计算类的均值,直到没有新元素的进出情况。mat
转载
2023-11-06 23:02:55
48阅读
这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解。第一步.随机生成质心由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两类,因此选取了两个质心,什么时候这一堆点能够根据这两个质心分为两堆就对了。如下图所示:第二步.根据距离进行分类红色和蓝色的点代表了我
转载
2024-02-10 20:44:12
178阅读
菜鸟一枚,编程初学者,最近想使用Python3实现几个简单的机器学习分析方法,记录一下自己的学习过程。关于KMeans算法本身就不做介绍了,下面记录一下自己遇到的问题。一 、关于初始聚类中心的选取 初始聚类中心的选择一般有:(1)随机选取(2)随机选取样本中一个点作为中心点,在通过这个点选取距离其较大的点作为第二个中心点,以此类推。(3)使用层次聚类等算法更新出初
转载
2023-07-20 14:40:48
152阅读
尽管基于划分的聚类算法能够实现把数据集划分成指定数量的簇,但是在某些情况下,需要把数据集划分成不同层上的簇:比如,作为一家公司的人力资源部经理,你可以把所有的雇员组织成较大的簇,如主管、经理和职员;然后你可以进一步划分为较小的簇,例如,职员簇可以进一步划分为子簇:高级职员,一般职员和实习人员。所有的这些簇形成了层次结构,可以很容易地对各层次上的数据进行汇总或者特征化。另外,使用基于划分的聚类算法(
转载
2024-06-28 07:38:10
98阅读
本例中,使用用户注册时间(注册天数reg_length)、活跃(最近活跃间隔天数rec_act_length、近7日活跃天数act_days)和变现(近7日日均广告点击量ad_pd、近7日日均阅读量read_pd)三个维度进行聚类。库导入在这里用到了os用来处理路径,numpy、pandas都是数据分析处理的常用库,matplotlib作简单的图形看指标分布,重头戏就是sklearn啦,用来完成我
转载
2024-03-04 01:25:34
29阅读
下面是几个城市的GDP等信息,根据这些信息,写一个SOM网络,使之对下面城市进行聚类。并且,将结果画在一个二维平面上。 //表1中,X。为人均GDP(元);X2为工业总产值(亿元);X。为社会消费品零售总额(亿元);x。为批发零售贸易总额(亿元);x。为地区货运总量(万吨),表1中数据来自2002年城市统计年鉴。//城市 X1 X2 X3 Xa X5 北京 27527 2738.30 1
转载
2023-06-20 14:47:21
122阅读
一、python代码'''
Author: Vici__
date: 2020/5/14
'''
import math
'''
Point类,记录坐标x,y和点的名字id
'''
class Point:
'''
初始化函数
'''
def __init__(self, x, y, name):
self.x = x # 横坐标
转载
2023-08-20 10:00:57
60阅读
准备说明:Python代码运行,需要有数据集,文章最后有csv格式的数据集,请自行下载。理论知识讲解:模糊理论模糊控制是自动化控制领域的一项经典方法。其原理则是模糊数学、模糊逻辑。1965,L. A. Zadeh发表模糊集合“Fuzzy Sets”的论文, 首次引入隶属度函数的概念,打破了经典数学“非0即 1”的局限性,用[0,1]之间的实数来描述中间状态。很多经典的集合(即:论域U内的某个元素是
转载
2024-08-13 17:42:44
39阅读
文章目录前言Scipy库简单入门1.cluster模块2. constants模块3. fftpack模块4. integrate 模块5. interpolate 模块6. linalg模块7. ndimage模块8. optimize模块9. stats模块10. ord模块总结 前言scipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算
转载
2023-10-24 10:18:33
81阅读
1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Jan 10 19:18:56 2018
4
5 @author: markli
6 """
7 import numpy as np;
8 '''
9 kmeans 算法实现
10 算法原理
11 1、随机选择k个点作为聚类中心点,进行聚类
12 2、求出聚类后的各类的 中心点
1
转载
2023-06-21 21:57:49
93阅读
一、python代码'''
Author: Vici__
date: 2020/5/13
'''
import math
'''
Point类,记录坐标x,y和点的名字id
'''
class Point:
'''
初始化函数
'''
def __init__(self, x, y, name, id):
self.x = x # 横坐标
转载
2023-07-18 13:43:45
90阅读
目录一、聚类分析1、聚类2、Scipy中的聚类算法(K-Means)3、聚类示例 完整代码:运行结果:函数使用:二、图像色彩聚类操作步骤:完整代码:运行结果:三、合并至Flask软件部分代码:运行结果:一、聚类分析1、聚类聚类是把相似数据并成一组(group)的方法。不需要类别标注,直接从数据中学习模式。2、Scipy中的聚类算法(K-Means) 随机选取K个数据点作为“种
转载
2023-08-09 07:28:55
352阅读
层次聚类(Hierarchical Clustering)一.概念 层次聚类不需要指定聚类的数目,首先它是将数据中的每个实例看作一个类,然后将最相似的两个类合并,该过程迭代计算只到剩下一个类为止,类由两个子类构成,每个子类又由更小的两个子类构成。如下图所示:二.合并方法在聚类中每次迭代都将两个最近的类进行合并,这个类间的距离计算方法常用的有三种:1.单连接聚类(Single-linkage cl
转载
2023-08-18 22:27:43
163阅读