# Python:K均值算法深入解析 是一种数据分析技术,它将相似的数据点分组为同一,使得同类数据之间的相似度最大,而异类数据之间的相似度最小。K均值(K-means)是一种广泛使用的算法,其基本思想是通过定义数据点的中心点(簇心)来实现对数据的划分。本文将深入探讨K均值算法的原理、应用场景以及Python实现,并附带示例代码。 ## K均值算法原理 K均值算法的核心思想是
原创 8月前
42阅读
文章目录前言Scipy库简单入门1.cluster模块2. constants模块3. fftpack模块4. integrate 模块5. interpolate 模块6. linalg模块7. ndimage模块8. optimize模块9. stats模块10. ord模块总结 前言scipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算
转载 2023-10-24 10:18:33
81阅读
主要参考   K-means 算法及 python 代码实现    还有  《机器学习实战》 这本书,当然前面那个链接的也是参考这本书,懂原理,会用就行了。1、概述K-means 算法是集简单和经典于一身的基于距离的算法采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,
转载 2023-06-21 21:47:14
159阅读
算法说明K均值算法其实就是根据距离来看属性,近朱者赤近墨者黑。其中K表示要的数量,就是说样本要被划分成几个类别。而均值则是因为需要求得每个类别的中心点,比如一维样本的中心点一般就是求这些样本的算术平均数。这里存在一个问题了,在最开始我并不知道哪个样本属于哪个类别,那么我怎么能求出中心点呢?如何去划分类别呢?既然是无监督的算法,肯定是没有结果来做训练的。算法思想首先最开始的类别数K我们需要先
转载 2024-03-28 17:09:21
38阅读
    最近看到Andrew Ng的一篇论文,文中用到了Kmeans和DL结合的思想,突然发现自己对ML最基本的算法都不清楚,于是着重的看了下Kmeans,并在网上找了程序跑了下。kmeans是unsupervised learning最基本的一个算法,我们可以用它来学习无标签的特征,其基本思想如下:    首先给出原始数据{x1
转载 2024-04-27 08:31:00
41阅读
python的输出对象到excel文件中,对数据进行标准化,进行kemans
原创 2021-06-09 17:18:01
1078阅读
K-means是一种广泛使用的算法,常用于数据分析中对相似数据分类处理。本文将详细描述如何使用Python实现K-means算法,分为背景描述、技术原理、架构解析、源码分析和案例分析等部分,以系统、直白的方式展示实现过程。 在数据科学的实际应用中,K-means算法能够帮助我们将大量的数据点按照相似性分组,便于后续的数据分析与处理。K-means算法的核心在于通过最小化不同数据点与其所在
原创 5月前
9阅读
划分Kmeans原理(1)任意选择k个对象作为初始的簇中心;(2)根据距离(欧式距离)中心最近原则,将其他对象分配到相应中;(3) 更新簇的质心,即重新计算每个簇中对象的平均值;(4) 重新分配所有对象,直到质心不再发生变化  调包实现import time import pandas as pd from sklearn import preprocessing da
转载 2023-07-28 13:11:42
219阅读
菜鸟一枚,编程初学者,最近想使用Python3实现几个简单的机器学习分析方法,记录一下自己的学习过程。关于KMeans算法本身就不做介绍了,下面记录一下自己遇到的问题。一   、关于初始中心的选取 初始中心的选择一般有:(1)随机选取(2)随机选取样本中一个点作为中心点,在通过这个点选取距离其较大的点作为第二个中心点,以此类推。(3)使用层次等算法更新出初
尽管基于划分的算法能够实现把数据集划分成指定数量的簇,但是在某些情况下,需要把数据集划分成不同层上的簇:比如,作为一家公司的人力资源部经理,你可以把所有的雇员组织成较大的簇,如主管、经理和职员;然后你可以进一步划分为较小的簇,例如,职员簇可以进一步划分为子簇:高级职员,一般职员和实习人员。所有的这些簇形成了层次结构,可以很容易地对各层次上的数据进行汇总或者特征化。另外,使用基于划分的算法(
目录一、聚类分析1、2、Scipy中的算法(K-Means)3、示例 完整代码:运行结果:函数使用:二、图像色彩操作步骤:完整代码:运行结果:三、合并至Flask软件部分代码:运行结果:一、聚类分析1、类聚是把相似数据并成一组(group)的方法。不需要类别标注,直接从数据中学习模式。2、Scipy中的算法(K-Means)  随机选取K个数据点作为“种
转载 2023-08-09 07:28:55
352阅读
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Wed Jan 10 19:18:56 2018 4 5 @author: markli 6 """ 7 import numpy as np; 8 ''' 9 kmeans 算法实现 10 算法原理 11 1、随机选择k个点作为中心点,进行 12 2、求出后的各类的 中心点 1
转载 2023-06-21 21:57:49
93阅读
k-means 接下来是进入算法的的学习,算法属于无监督学习,与分类算法这种有监督学习不同的是,算法事先并不需要知道数据的类别标签,而只是根据数据特征去学习,找到相似数据的特征,然后把已知的数据集划分成几个不同的类别。比如说我们有一堆树叶,对于分类问题来说,我们已经知道了过去的每一片树叶的类别。比如这个是枫树叶,那个是橡树叶,经过学习之后拿来一片新的叶子,你看了一眼,然后说这是枫树
转载 2023-08-20 23:25:47
175阅读
python实现层次 层次(Hierarchical Clustering)一.概念  层次不需要指定聚的数目,首先它是将数据中的每个实例看作一个,然后将最相似的两个合并,该过程迭代计算只到剩下一个为止,由两个子类构成,每个子类又由更小的两个子类构成。如下图所示:二.合并方法在中每次迭代都将两个最近的进行合并,这个间的距离计
一、python代码''' Author: Vici__ date: 2020/5/13 ''' import math ''' Point,记录坐标x,y和点的名字id ''' class Point: ''' 初始化函数 ''' def __init__(self, x, y, name, id): self.x = x # 横坐标
转载 2023-07-18 13:43:45
90阅读
阅读前提:了解K-means算法了解Python基本语句知道什么是txt文件code需要当前目录下添加一个city.txt文件。#coding=utf-8 import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans #从磁盘读取城市经纬度数据 X = [] f = open('cit
转载 2023-08-30 15:09:29
100阅读
层次(Hierarchical Clustering)一.概念  层次不需要指定聚的数目,首先它是将数据中的每个实例看作一个,然后将最相似的两个合并,该过程迭代计算只到剩下一个为止,由两个子类构成,每个子类又由更小的两个子类构成。如下图所示:二.合并方法在中每次迭代都将两个最近的进行合并,这个间的距离计算方法常用的有三种:1.单连接(Single-linkage cl
转载 2023-08-18 22:27:43
163阅读
本文简要介绍了多种无监督学习算法的 Python 实现,包括 K 均值、层次、t-SNE 、DBSCAN 。无监督学习是一用于在数据中寻找模式的机器学习技术。无监督学习算法使用的输入数据都是没有标注过的,这意味着数据只给出了输入变量(自变量 X)而没有给出相应的输出变量(因变量)。在无监督学习中,算法本身将发掘数据中有趣的结构。人工智能研究的领军人物 Yan Lecun,解释道:
转载 2023-08-23 16:16:50
124阅读
最近在做SOM神经网络模型的项目,之前一直在用Matlab的工具箱,一直想转成Python的代码来实现,就到处找,结果还真有SOM相关的库。 自组织地图MiniSom 是自组织映射 (SOM) 的简约和基于 Numpy 的实现。SOM 是一种人工神经网络,能够将高维数据项之间复杂的非线性统计关系转换为低维显示器上的简单几何关系。Minisom 旨在让研究人员能够轻松地在其基础上进行构建,并
(Spectral Clustering,SC)是一种基于图论的方法,将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量远。能够识别任意形状的样本空间且收敛于全局最优解,基本思想是利用样本数据的相似矩阵(拉普拉斯矩阵)进行特征分解后得到的特征向量进行。对于item-user矩阵,如果要将item进行我们可以采用k-means,复杂度为O(tknm
  • 1
  • 2
  • 3
  • 4
  • 5