EM算法的简介 EM算法由两步组成:E步和M步,是最常用的迭代算法。本文主要参考了李航博士的《统计学习方法》 在此基础上主要依据EM算法原理补充了三硬币模型的推导。1.EM算法的原理1.1从一个例子开始三硬币模型 假设有3枚硬币,分别记作A,B和C。 这些硬币正面向上的概率分别是 和 。进行如下抛硬币试验: 1、先抛硬币A, 根据其结果选出硬币B或者硬币C,正面选硬币B,反面选硬币C; 2、然
转载
2023-10-08 12:35:49
148阅读
EM算法:期望最大化算法MLE(极大似然估计法)是一种非常有效的参数估计方法,但在概率模型中,有时既含有观测变量 (observable variable), 又含有隐变量(hidden variable)或潜在变量(latent variable),例如:分布中有多余参数或数据为截尾或缺失时,这个时候使用MLE求解是比较困难的。于是Dempster等人于1977年提出了EM算法,其出发点是把求M
转载
2024-04-19 08:37:14
114阅读
二:SEM算法2.1EM算法最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计。在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏
背景 分子动力学模拟是一种研究分子体系结构与性质的重要方法,已被广泛应用于生、化、环、材等学科领域。 LAMMPS分子动力学程序是一款免费的软件,可模拟气态、液态、固态以及混合态体系,其计算速度快,计算能力强,采用不同的力场合边界条件来模拟全原子,聚合物,生物,金属,粒状和粗粒化等。水 
目录1、重载1.1方法的动态性2、 私有属性和私有方法(实现封装)3、@property装饰器3.1将一个方法调用方式变为“属性调用”。3.2装饰器的用法4、面向对象的三大特征4.1继承4.2方法重写5、object的根类6、重写__str()__方法7、多重继承8、super()获得分类的定义9、多态10、特殊方法和运算符重载11、特殊属性12、对象的浅拷贝和深拷贝13、组合14、设计模式_工厂
转载
2024-04-10 05:15:47
43阅读
统计学习基础回顾 1. 后验概率 2 2. . 极大似然法 (MLE) 信息论基础 1. (互)信息 2. 熵、条件熵 3. 交叉熵、相对熵 最大熵模型 1 1 . 凸优化理论推导 Maxent 2. 与 MLE 的关系 EM 算法 1 1 . GMM 实例 2. MLE 推导我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为
转载
2024-05-13 13:38:25
42阅读
EM算法在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算:第一步是计算期望(E),利用概率模型参数的现有估计值,计算隐藏变量的期望;
转载
2023-12-01 12:46:01
79阅读
EMC 检测(电磁兼容性检测)的全称是 Electro Magnetic Compatibility,其定义是设备和系统在其电磁环境中能正常工作且不对环境中任何事物构成不能承受的电磁骚扰的能力。EMC 检测包括两个方面的要求:电磁敏感度(EMS)测试 +电磁干扰(EMI)测试。 EMS,全称为Electro Magnetic Susceptibility,是指在一定环境中机器设备和系统具有对所在
转载
2024-07-10 14:28:03
139阅读
EDM营销:全称Email Direct Marketing,即电子邮件营销。企业可以通过使用EDM软件向目标客户发送EDM邮件,建立同目标顾客的沟通渠道,向其直接传达相关信息,用来促进销售。EDM软件有多种用途,可以发送电子广告、产品信息、销售信息、市场调查、市场推广活动信息等。身为一名会修电脑的数据分析师,总是要想着怎样把公司电脑搞坏,顺便给公司创造点价值刚好python有个 import
转载
2024-08-18 16:27:48
64阅读
EM算法:最大期望算法是一类通过迭代进行极大似然估计的优化算法,通常作为牛顿迭代法的替代,用于对包含隐变量或缺失数据的概率模型进行参数估计。在进行了解之前,我们先通过一个抛硬币的经典例子来解释EM算法的由来: 现在我们有两枚硬币 A 和 B,这两枚硬币和普通的硬币不一样,他们投掷出正面的概率和投掷出反面的概率不一定相同。我们将 A 和 B 投掷出正面的概率分别记为θA和θB。独立地做 5 次试验:
转载
2023-11-15 20:28:13
112阅读
SSVEP信号中含有自发脑电和大量外界干扰信号,属于典型的非线性非平稳信号。传统的滤波方法通常不满足对非线性非平稳分析的条件,1998年黄鄂提出希尔伯特黄变换(HHT)方法,其中包含经验模式分解(EMD)和希尔伯特变换(HT)两部分。EMD可以将原始信号分解成为一系列固有模态函数(IMF) [1],IMF分量是具有时变频率的震荡函数,能够反映出非平稳信号的局部特征,用它对非线性非平稳的SSVEP信
转载
2023-09-26 15:35:16
114阅读
目录EMD分解解析一、 EMD初步介绍1.什么是EMD?2.EMD的工作原理是什么?3.EMD的基本分解过程二、EMD的分解三、EMD工具包的安装参考文献 EMD分解解析希望能通过这篇文章,让你对EMD分解具有初步的了解。一、 EMD初步介绍1.什么是EMD?经验模态分解(Empirical Mode Decomposition,简称EMD)方法被认为是2000年来以傅立叶变换为基础的线性和稳态
转载
2024-01-26 09:32:13
150阅读
EMD是时频分析常用的一种信号处理方式,EMD经过发展到现在也有很多不同的发展,本文总结了已知的各种优化和变种。分类:EMD(经验模态分解):基本模态分解 EEMD(集合经验模态分解):EMD+白噪声 CEEMD(互补集合经验模态分解):加正负成对的辅助白噪声 CEEMDAN(完全自适应噪声集合经验模态分解):分解过程加白噪声经EMD分解得到的各阶IMF分量 ESMD(极点对称模态分解):外部包络
转载
2024-04-21 15:49:56
234阅读
之前我们有了十几篇文章讲述了EMD算法的基础理论、IMF的含义、EMD的MATLAB实现方法,EEMD、CEEMD、CEEMDAN、VMD、ICEEMDAN、LMD、EWT、SWT的理论及代码实现,还讲到了HHT算法理论及其代码实现。上一篇介绍了IMF分量的方差贡献率、平均周期、相关系数,今天这篇讲一下也很常用和好用的IMF处理方法。一、关于IMF的重构有很多同学问IMF的重构要怎么做,信号重构确
转载
2023-12-29 16:46:43
52阅读
# Python中的经验模态分解(EMD)及其安装
在数据分析和信号处理中,经验模态分解(Empirical Mode Decomposition,简称EMD)是一种重要的方法。EMD可以有效地将复杂信号分解成一组本征模态函数(IMF),便于后续分析。本文将介绍如何在Python中安装EMD库,以及如何使用该库进行信号处理。
## 1. 什么是EMD?
经验模态分解是一种时域信号处理技术,旨
原创
2024-10-14 06:25:56
624阅读
关于“EMD分解Python”的实现过程,今天我们将详细聊聊如何一步一步实现这个功能。从环境准备到优化技巧,保证大家能够轻松上手。在每个步骤中,我们都会加入一些图表和代码块,以帮助理解。
### 环境准备
在开始之前,首先要确保你的软硬件环境能够支撑EMD(经验模态分解)的实现。以下是我们的基本要求:
#### 软件要求
- Python 3.7或更高版本
- NumPy库
- SciPy
在数据分析和信号处理领域中,经验模态分解(EMD)是一种强大的工具,广泛用于从复杂信号中提取有用信息。本文将探索如何在 Python 中实施 EMD,具体内容包括背景描述、技术原理、架构解析、源码分析、应用场景及扩展讨论。
## 背景描述
EMD 是一种用于分析非平稳或非线性信号的技术,它通过将复杂信号分解为若干个固有模态函数(IMF)来帮助分析和理解信号特性。EMD 的核心在于局部特征的提取
# Python实现EMD的步骤详解
## 导言
欢迎小白开发者加入Python开发的行列!在这篇文章中,我将向你介绍如何使用Python实现EMD(Earth Mover's Distance)算法。EMD是一种用于衡量两个概率分布之间的相似性的方法,广泛应用于计算机视觉、自然语言处理等领域。通过学习这个算法,你将更深入地理解Python的使用和数据处理的概念。
## 整体流程
在开始编
原创
2024-01-05 10:15:25
157阅读
Earth Mover's Distance (EMD)作者: sylvan5翻译: Myautsai和他的朋友们(Google Translate、shuanger、qiu)本文将讨论Earth Mover’s Distance (EMD),和欧式距离一样,它们都是一种距离度量的定义、可以用来测量某两个分布之间的距离。EMD主要应用在图像处理和语音信号处理领域,在自然语言处理上很少有听说。EMD
郑重声明:本文档只是方便自己学习记录1.EMD 工具包安装下载地址:://github./laszukdawid/PyEMD2.解压工具包,将文件复制到自己的python(Anaconda)的Lib的site-packages3.cmd切换到包的目录4.输入python setup.py install安装5.EMD分解实验# 导入工具库
import numpy as np
fr
转载
2023-07-03 18:09:29
644阅读