python 文本聚类分析案例说明摘要1、结巴分词2、去除停用词3、生成tfidf矩阵4、K-means聚类5、获取主题词 / 主题词团 说明实验要求:对若干条文本进行聚类分析,最终得到几个主题词团。实验思路:将数据进行预处理之后,先进行结巴分词、去除停用词,然后把文档生成tfidf矩阵,再通过K-means聚类,最后得到几个类的主题词。实验说明:如何用爬虫获取数据可以参考其他博客,这里我们直接
转载
2023-08-23 15:14:23
313阅读
话题模型topic model是自然语言处理领域里面热门的一个技术,可以用来做很多的事情,例如相似度比较,关键词提取,分类,还有就是具体产品业务上的事了,总之可以干很多的事情。今天不会讲LDA模型的很多细节和原理,没有满屏的数学公式,只讲一讲LDA模型是个什么东西,简单的原理,用什么技术实现的LDA,以及LDA能做什么开发和LDA在实现中的一些问题。什么是主题对于一篇新闻报道,看到里面讲了昨天NB
转载
2024-08-28 20:22:54
56阅读
1 实验环境部署1.1 主机环境 处理器 Intel(R) Core(TM)2 Duo CPU 2.80GHz内存 8.00GB操作系统 WIN7SP1 64bit1.2虚拟机环境VMware® Workstation 10.0.2 build-1744117处
转载
2023-12-15 15:38:31
140阅读
聚类算法相关:聚类算法(一)——DBSCAN聚类算法(二)—— 优缺点对比聚类算法(三)—— 评测方法1聚类算法(三)—— 评测方法2聚类算法(三)—— 评测方法3(代码)聚类算法(四)—— 基于词语相似度的聚类算法(含代码)聚类算法(五)——层次聚类 linkage (含代码)聚类算法(六)——谱聚类 (含代码) 写了那么多聚类文章,没写Kmeans感觉不太厚道, 
转载
2024-01-17 10:06:41
96阅读
# Python 文本聚类
在自然语言处理领域,文本聚类是一种将文本数据分成多个组或簇的方法。文本聚类可以帮助我们发现文本数据中的隐藏模式、主题和关联性。Python 提供了丰富的工具和库来实现文本聚类任务。
## 文本预处理
在进行文本聚类之前,首先需要对文本数据进行预处理。预处理步骤通常包括分词、去除停用词、词干提取和向量化等。
### 分词
分词是将文本数据划分为单个词或短语的过程
原创
2023-07-22 05:43:04
315阅读
简介一 切词二 去除停用词三 构建词袋空间VSMvector space model四 将单词出现的次数转化为权值TF-IDF五 用K-means算法进行聚类六 总结简介查看百度搜索中文文本聚类我失望的发现,网上竟然没有一个完整的关于Python实现的中文文本聚类(乃至搜索关键词python 中文文本聚类也是如此),网上大部分是关于文本聚类的Kmeans聚类的原理,Java实现,R语言实现,甚至都
# Python文本聚类实现
## 概述
在本文中,我将为你介绍如何使用Python实现文本聚类。文本聚类是将相似的文本数据分组到一起的一种技术。通过文本聚类,我们可以更好地理解文本数据的结构和关系,从而为后续的文本分析和信息提取提供基础。
## 流程
下面是实现文本聚类的一般流程,我们将在接下来的步骤中详细介绍每一步。
| 步骤 | 描述 |
| --- | --- |
| 1. 数据预处
原创
2023-07-24 00:26:01
497阅读
# 文本聚类 Python 实现教程
## 整体流程
首先,我们需要明确文本聚类的整体流程,具体如下表:
| 步骤 | 描述 |
|------|---------------|
| 1 | 数据预处理 |
| 2 | 特征提取 |
| 3 | 文本聚类 |
| 4 | 结果可视化 |
## 代码示例
### 数据
原创
2024-04-23 07:03:02
39阅读
Python 文本相似度和聚类文本数据是非结构化的和高噪声的。在执行文本分类时,拥有标记合理的训练数据和有监督学习大有裨益。但是,文档聚类是一个无监督的学习过程,将尝试通过让机器学习各种各样的文本文档及其特征、相似度以及它们之间的差异,来讲文本 文档分割和分类为单独的类别。这使得文档聚类更具挑战性,也更有意思。考虑一个设计各种不同的概念和想法的文档语料库。人类以这样的方式将它们联系在一起,即使用过
转载
2023-07-24 20:17:28
72阅读
输入分析: mahout下处理的文件必须是SequenceFile格式的,所以需要把txtfile转换成sequenceFile,而聚类必须是向量格式的,mahout提供下面两个命令来将文本转成向量形式 1.mahout seqdirectory:将文本文件转成SequenceFile文件,SequenceFile文件是一种二制制存储的key-value键值对,http://www.dongtai
转载
2023-12-28 15:53:32
38阅读
文本聚类正所谓人以类聚,物以群分。人类获取并积累信息时常常需要整理数据,将相似的数据归档到一起。许多数据分析需求都归结为自动发现大量样本之间的相似性,并将其划分为不同的小组,这种根据相似性归档的任务称为聚类。基本概念聚类(cluster analysis)指的是将给定对象的集合划分为不同子集的过程,目标是使得每个子集内部的元素尽量相似,不同子集间的元素尽量不相似。这些子集又被称为簇(cluster
转载
2023-08-11 11:50:51
175阅读
目录1.导入原始数据集 2.首次计算中心点3.进行迭代循环,不断优化样本中心点和聚类结果4.聚类可视化通过手动书写k-means聚类算法的逻辑实现聚类(而非使用python内置的sklearn)不了解k-means聚类算法的话可以先去了解以下这种算法的原理,下面就直接进入正题啦~1.导入原始数据集首先我们导入原始样本点,这里我们通过execl表记录原始数据,原始数据为假设为某班学术的平时
转载
2023-06-21 21:53:09
196阅读
1、基本概念 (1)聚类的思想: 将数据集划分为若干个不想交的子集(称为一个簇cluster),每个簇潜在地对应于某一个概念。但是每个簇所具有现实意义由使用者自己决定,聚类算法仅仅会进行划分。 (2)聚类的作用: 1)可以作为一个单独的过程,用于寻找数据的一个分布规律 2)作为分类的预处理过程。首先对分类数据进行聚类处理,然后在聚类结果的每一个簇上执行分类过程。 (3)聚类
转载
2023-07-13 15:01:34
163阅读
文章目录前言算法KMEANS-家庭消费调查DBSCAN-上网时间分布KMEANS-整图分割总结 前言对中国大学MOOC-北京理工大学-“Python机器学习应用”上的实例进行分析和修改:记录一些算法、函数的使用方法;对编程思路进行补充;对代码中存在的问题进行修改。课程中所用到的数据算法1.K-Meansfrom sklearn.cluster import KMeans
km = KMeans(
转载
2023-06-12 17:34:05
175阅读
引用:Core Concepts — gensim<<自然语言处理入门>>一、简介 文本聚类( text
clustering
,也称文档聚类或
document
clustering
)指的是对文档进行的聚类分
析,被广泛用于文本挖掘和信息检索
文章目录精简2.0版精简1.0版选择主题个数困惑度、一致性网页可视化旧版本,啰嗦的代码以中文为例 精简2.0版参考文档:找不到了 只对分词和去除停用词的步骤进行精简。 需要注意的是,比如“女士包”ana.extract_tags只会识别除“女士”,没有“包”,这与分词和字典无关。所以比较严谨的场景建议使用jieba.lcut# 临时字典:把数字+单位算上。如2022年,3000w。
for i
转载
2023-10-13 17:08:42
267阅读
由于工作需要,使用了聚类方法在文本语料中挖掘类别信息,下面是一个demo,供大家参考。实验数据由于公司原因不便公开。实验步骤:1、 排序去重,经过排序去重后数据从10万条变为3万条。 2、 结巴分词。 3、 特征提取,使用平滑后的tf-idf作为特征,为每个用户问题构建特征向量,采用了scikit-learn 中的类 TfidfVectorizer。 4、 采用了两种聚类方法K-means 。 K
转载
2023-12-10 16:30:26
178阅读
让我们假设您有一堆来自用户的文本文档,并希望从中获得一些见解。例如,如果您是市场,则可以对某些商品进行数百万次评论。另一个可能的情况是,日常用户使用您的服务创建文本文档,并且您希望将这些文档分类到某些组中,然后向用户提出这些预测类型。听起来很酷,不是吗?问题是您事先不知道文档类型:它可能从10到数千个可能的类不等。当然,您不希望手动执行此操作。令人高兴的是,我们可以使用简单的Python代码来聚类
转载
2023-08-31 16:02:55
100阅读
接触机器学习时间不长,也一直有兴趣研究这方面的算法。最近在学习Kmeans算法,但由于工作的原因无法接触到相关的项目实战。为了理清思路、熟悉代码,在参照了几篇机器学习大神的博文后,做了一个简单的Kmeans算法的简单练习。作为一枚机器学习的门外汉,对于文中的一些错误和不足,还望您多多包涵,也欢迎您的批评和建议(第一次发博客,有点语无伦次,见谅哈)。先说一下我的大致思路:1、利用爬虫进行文本数据的爬
转载
2023-10-10 14:02:19
46阅读
给出已经分好的英文数据集,数据集中没有重复的单词,进行文本聚类聚类就是先把英文单词转化为向量,根据要聚成多少类,随机选择点,用欧氏距离或者余弦距离进行计算,把随机选择的中心点附近的点跟他归为一类,所以要先计算tdidf的值,关于pycharm中kmeans包中的函数介绍n_clusters: 簇的个数,即你想聚成几类init: 初始簇中心的获取方法n_init: 获取初始簇中心的更迭次数,为了弥补
转载
2024-05-29 10:19:38
72阅读