一幅图像纹理是在图像计算中经过量化的图像特征图像纹理描述图像或其中小块的空间颜色分布和光强分布。基于结构的方法和基于统计数据的方法。一个基于结构的纹理特征提取方法是将所要检测的纹理进行建模,在图像中搜索重复的模式。该方法对人工合成的纹理识别效果较好。但对于交通图像中的纹理识别,基于统计数据的方法效果较好。1 LBP纹理特征    &
  LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用于纹理特征提取。而且,提取特征图像的局部的纹理特征;1、LBP特征的描述LBP算子定义为在3*3的窗口内,以窗口中
       面向对象的信息提取主要针对高分辨率遥感数据,面向对象的分类方法首先对遥感影像进行分割,得到同质对象,再根据遥感分类或目标地物提取的具体要求,检测和提取地物的多种特征(如光谱、形状、纹理、阴影、空间位置、相关布局等),利用模糊分类方法以达到对遥感影像进行分类和目标地物提取的目的。面向对象方法使得影像分类的结果更合理,也更适合于高分辨率遥感影像的分
# Python 图像纹理特征图像处理中,纹理特征是指图像中重复出现的细小结构,通常用来描述图像的表面细节和复杂性。通过分析图像纹理特征,我们可以实现图像识别、分类、分割等应用。本文将介绍如何使用Python提取图像纹理特征,并进行简单的分析。 ## 纹理特征提取方法 常用的图像纹理特征提取方法包括灰度共生矩阵(GLCM)、方向梯度直方图(HOG)、局部二值模式(LBP)等。这些方法
原创 2024-03-20 06:52:46
409阅读
  机器学习最主要就是特征提取特征分类。提取特征的好坏,直接影响这分类的结果判断,所以在整个系统中占有很重要的位置。所提取特征要在能表征物体特征的基础上,尽量做到维数少,易于计算和存储。常用的图像特征有颜色特征纹理特征、形状特征、空间关系特征等。(1)颜色特征  特点:颜色特征是一种全局特征,描述了图像图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像图像
计算机视觉的特征提取算法研究至关重要。在一些算法中,一个高复杂度特征提取可能能够解决问题(进行目标检测等目的),但这将以处理更多数据,需要更高的处理效果为代价。而颜色特征无需进行大量计算。只需将数字图像中的像素值进行相应转换,表现为数值即可。
转载 2021-07-16 13:51:54
958阅读
计算机视觉的特征提取算法研究至关重要
转载 2021-07-22 16:14:06
1619阅读
基于 GLCM 的 14 个纹理特征中,仅有 4 个特征( 角二阶矩、对比度、逆差分矩、相关性) 是不相关的:  ( 1) 对于计算窗口 N 的选取,不宜过大或过小,过大将导致计算和存储量大,但过小又导致不能包含完整的纹理信息。一般而言,当图像大小确定后,计算窗口就随之确定,除非对图像分块处理或者确定图像的ROI ( Region Of Interest) 区域后再提取 GLC
 coarseness.m%graypic为待处理的灰度图片,2^kmax为最大窗口 function Fcrs=coarseness(graypic,kmax) %获取图片大小 [h,w]=size(graypic); %平均灰度值矩阵A A=zeros(h,w,2^kmax); %计算有效可计算范围内每个点的2^k邻域内的平均灰度值 for i=2^(kmax-1)+1:h-2^(k
转载 2023-09-09 02:06:43
203阅读
王萌深度学习冲鸭著作权归作者所有,文仅分享,侵删1...
# 图像纹理特征提取深度学习指南 图像纹理特征提取是计算机视觉中的一个重要任务,通过分析图像中的纹理信息,帮助我们更好地理解和处理图像。在本指导中,我将带领你了解如何使用深度学习来提取图像纹理特征。整个过程可以分为以下几个步骤: ## 流程概述 我们将整个流程总结为以下表格: | 步骤 | 描述
原创 9月前
331阅读
“拍立淘”“一键识花”“街景匹配”……不知道大家在使用这些神奇的功能的时候,有没有好奇过它们背后的技术原理?其实这些技术都离不开最基本的图像检索技术。本篇文章我们就将对这一技术的原理进行介绍,并通过一个简单的Python脚本来实现一个最基本的图像检索demo。 ▌图像特征 首先我们需要明白图像特征是什么以及它的使用方法。图像特征是一种简单的图像模式,基于这种模式我们可以描述我们在图
LBP纹理特征提取 LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen,和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取特征图像的局部的纹理特征;1、LBP特征的描述  &
1、前言传统 LBP 特征通过比较重心局部窗口区域中心像素点灰度值与其它像素点的灰度关系来进行二值编码,因而极易受噪点影响。在非均匀光照、噪声及遮挡等情况下对图像纹理特征的描述能力不足。ELBP 在对图形进行二值特征时,不仅考虑中心像素点灰度值与其它像素点的灰度大小关系,还对其灰度差异值的绝对值进行编码,以增加图像纹理的细节信息。本文旨在介绍 ELBP 特征提取方式实现思路。2、实现原理传统 LB
转载 2023-12-20 05:34:30
194阅读
纹理特征的定义:纹理特征刻画了图像中重复出现的局部模式与他们的排列规则,常用于图像分类和场景识别。纹理特征描述的含义:其只能反映物体表面的特性,无法完全反映出物体的本质属性,所以仅仅利用纹理特征无法获得图像的高层次内容。 优点:  1. 具有旋转不变性  2. 具有良好的抗噪性能。 缺点:  1. 当图像的分辨率变化的时候,所计算出来的纹理可能会有
在这篇博文中,我将和你分享如何通过 Python 实现“纹理特征提取”。纹理特征提取广泛应用于计算机视觉领域,比如图像处理、医学影像分析和模式识别等,准确提取纹理特征不仅能提升图像分析的效率,还能显著提高后续任务的准确性。 ### 背景定位 在某次项目中,我们需要处理大量医学影像,提取出关键纹理特征以便后续分析。随着项目的推进,特征提取的需求不断增加,而数据量也在快速扩大。这造成了处理时间过长
 一幅图像纹理是在图像计算中经过量化的图像特征图像纹理描述图像或其中小块区域的空间颜色分布和光强分布。纹理特征提取分为基于结构的方法和基于统计数据的方法。一个基于结构的纹理特征提取方法是将所要检测的纹理进行建模,在图像中搜索重复的模式。该方法对人工合成的纹理识别效果较好。但对于交通图像中的纹理识别,基于统计数据的方法效果更好。1.1.1   LBP纹理
特征提取——纹理特征 LBP图像特征 图像处理之特征提取(二)之LBP特征简单梳理<br> https://blog.csdn.net/coming_is_winter/article/details/72859957<br> https://blog.csdn.net/zouxy09/article/details/7929531<br> LBP特征理解。&l
原创 2023-06-05 20:16:27
916阅读
求一幅图的纹理特征图原图 (1)转为灰度图cvtColor(src_img, gray_img, CV_BGR2GRAY); (2)获得LBP模板并赋值LBP纹理提取代码/* CV:LBP Author:1210 Date:2019/03/17 */ #include <opencv2/opencv.hpp> #include <highgui.h> using name
转载 2023-05-23 14:30:08
221阅读
  • 1
  • 2
  • 3
  • 4
  • 5