在之前介绍的梯度下降法的步骤中,在每次更新参数时是需要计算所有样本的,通过对整个数据集的所有样本的计算来求解梯度的方向。这种计算方法被称为:批量梯度下降法BGD(Batch Gradient Descent)。但是这种方法在数据量很大时需要计算很久。针对该缺点,有一种更好的方法:随机梯度下降法SGD(stochastic gradient descent),随机梯度下降是每次迭代使用一个样本来对参
                                 &n
import numpy as np import random # 随机选取样本的一部分作为随机样本进行随机梯度下降的小部分样本,x为元样本,row_size为随机样本的行数 # 随机取样本 def rand_x(x, row_size): xrow_lenth = x.shape[0] # print('元样本行数:{}行'.format(xrow_lenth)) f
转载 2023-05-26 21:54:58
103阅读
 书本源码 import numpy as np import matplotlib.pyplot as plt # 读入训练数据 train = np.loadtxt('click.csv', delimiter=',', dtype='int', skiprows=1) train_x = train[:,0] train_y = train[:,1] # 标准化 mu = tr
随机梯度下降法(SGD)是一种广泛应用于大规模优化任务的算法,尤其在机器学习领域中,学习模型的训练过程通常需要使用它。本文将详细记录使用 Python 实现随机梯度下降法的过程,涵盖从环境预检到版本管理的完整流程。 ## 环境预检 在实施 SGD 之前,我们需要确认环境的硬件和软件配置。以下是我的硬件配置表格: | 硬件 | 规格 | |--
原创 6月前
44阅读
随机梯度下降几乎所有的深度学习算法都用到了一个非常重要的算法:随机梯度下降(stochastic gradient descent,SGD)随机梯度下降梯度下降算法的一个扩展机器学习中一个反复出现的问题: 好的泛化需要大的训练集,但是大的训练集的计算代价也更大机器学习算法中的代价函数通常可以分解成每个样本的代价函数的总和。训练数据的负条件对数似然函数可以写成:\[J(\theta)=E_{x,y
转载 2024-02-22 13:12:21
223阅读
三种梯度下降算法及代码实现批量梯度下降算法(Batch Gradient Descent)随机梯度下降法(Stochastic gradient descent, SGD)小批量梯度下降(Mini-Batch Gradient Descent, MBGD)我们先创建一组数据,来对这组数据应用一下三种梯度下降看下区别。我们在python里面实现可视化,首先需要导入一些必要的包import numpy
原文链接:http://ihoge.cn/2018/GradientDescent.html最近在看机器学习相关的基础算法原理,意外发现一个大神的分享网页,简洁并且语言精炼,思路很清楚,仔细研究会对算法原理有新的理解,另外还有代码分享,可以手码.引言李航老师在《统计学习方法》中将机器学习的三要素总结为:模型、策略和算法。其大致含义如下:模型:其实就是机器学习训练的过程中所要学习的条...
随机梯度下降法1. 概念 那个梯度值准确的求出来。   那么通过推导的这个公式可以看出来,要想求出这个准确的梯度来,在这个式子中每一项都要对所有的样本( 个)进行一下计算,前面是有一个求和计算的,那么这样的一个下降法通常又叫做批量梯度下降法(Batch Gradient Descent)。也就是说,每一次计算的过程都要将样本中所有的信息批量的进行计算,但是这显然就带来了一个问题,如果我们的 个样
        同这一章的梯度下降部分加起来,才是我们要讲的如何求解多元线性回归.如果写在一章中,内容过长,担心有的同学会看不完,所以拆分成两章.[坏笑]        上一章中有提到利用解析解求解多元线性回归,虽然看起来很方便,但是在解析解求解的过程中会涉及到矩阵求逆的步骤.随着维度的增多,矩阵求逆的代价会越来越大(
这个专栏主要是用来分享一下我在机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下《白话机器学习中的数学——随机梯度下降法》!一、什么是随机梯度下降法 随机梯度下降随机取样替代完整的样本,主要作用是提高迭代速度,避免陷入庞大计算量的泥沼。 对于整个样本做GD又称为批梯度下降(BGD,batch gradient descent
1.梯度下降   1)什么是梯度下降?         因为梯度下降是一种思想,没有严格的定义,所以用一个比喻来解释什么是梯度下降。                简单来说,梯度下降就是从山顶找一条最短的路走到山脚最低的地方。但是
随机梯度下降(SGD)作为一种广泛使用的优化算法,对于机器学习和深度学习中的模型训练至关重要。在这篇博文中,我将详细记录如何在Python中实现随机梯度下降,包括环境准备、分步指南、配置详解、验证测试、排错指南和扩展应用。 ## 环境准备 ### 软硬件要求 为了你的代码能够顺利运行,以下是需要准备的软硬件环境: | 组件 | 最低要求 | 推荐配置
文章目录1、随机梯度下降-Stochastic Gradient Descent2、小批量梯度下降 - Mini-batch Gradient descent3、随机梯度下降算法的收敛性4、在线学习-Online Learning5、映射约减-map reduceTHE END 1、随机梯度下降-Stochastic Gradient Descent 随机梯度下降是相对于批量梯度下降(batch
SGD是什么 SGD是Stochastic Gradient Descent(随机梯度下降)的缩写,是深度学习中常用的优化算法之一。SGD是一种基于梯度的优化算法,用于更新深度神经网络的参数。它的基本思想是,在每一次迭代中,随机选择一个小批量的样本来计算损失函数的梯度,并用梯度来更新参数。这种随机性使得算法更具鲁棒性,能够避免陷入局部极小值,并且训练速度也会更快。怎么理解梯度? 假设你在爬一座山,
随机梯度下降:   我们用X1,X2..Xn 去描述feature里面的分量,比如x1=房间的面积,x2=房间的朝向,等等,我们可以做出一个估计函数:    θ在这儿称为参数,在这儿的意思是调整feature中每个分量的影响力,就是到底是房屋的面积更重要还是房屋的地段更重要。为了如果我们令X0 = 1,就可以用向量的方式来表示了: &nb
什么是梯度下降梯度下降法已经有很多其他博主做了充分的介绍,可以自行百度,我个人觉得Evan这个帖子讲的很清楚。这里不在赘述,感兴趣的可以自行查阅。代码实现梯度下降法批量梯度下降法(batch_gradient_descent) 批量梯度下降法指的是在每次调整梯度寻找最优解的时候都将所有样本考虑在内。优点:收敛的最优解准确,数量级小时收敛也很快。 缺点:样本数量多时,收敛速度慢,更新一次梯度需要很
随机梯度下降法(Stochastic Gradient Descent,SGD)是一种常用的优化算法,主要应用于机器学习中的模型训练过程中。它是一种基于梯度下降算法的变种,能够在大规模数据集上高效地进行模型训练。梯度下降法是一种常见的优化算法,它的基本思想是通过不断调整模型参数,使得损失函数最小化。在梯度下降法中,每次迭代时都会计算所有样本的梯度,并更新模型参数。当数据集非常大时,这种全局计算梯度
自己yy了一个十分不靠谱的使用线性回归的梯度下降法来拟合数据,预测函数只用了二项式,所以不会出现过拟合的情况。用python实现:1 import numpy as np 2 import math 3 4 m = int(input())//输入数据组数,用[xi,yi]表示第i组数据 5 6 data = np.empty((m,3))用来存放1,xi,xi*xi,来进行矩阵乘法
转载 2020-03-27 22:23:00
127阅读
目录  一元线性回归模型   一元线性回归代价函数图像   梯度下降求解   SGD、BGD、Mini-batchGD的特点   参考资料 在《深度学习面试题03改进版梯度下降法Adagrad、RMSprop、Momentum、Adam》中讲到了多种改进的梯度下降公式。而这篇文章和03篇描述的不是一个事情,我们从一个例子说起,就知道改良的GD算法和本节介绍的GD算法的不同点了。一元线性回归模型举例
  • 1
  • 2
  • 3
  • 4
  • 5