在论文中,总能看到类似于这种数据评价方法: 在找了一圈之后明白了这个是使用T分布来进行数据间的相关性分析,参照这里:https://zhuanlan.zhihu.com/p/29284854 那么什么是T检验呢: t检验是用t分布理论来推论差异发生的概率解决什么问题 从而比较两个平均数的差异是否显著公式以及参数含义 t检验分为单总体检验和双总体检验。单总体t检验是检验一个样本平均数与一个已知的总体
转载
2023-12-12 18:25:42
381阅读
假设检验 通常设定两个假设:零假设和备择假设,然后通过拒绝零假设,来接受备择假设,从而完成检验。p值 p值中p表示概率,指的是零假设若成立,得到测里样本情况的概率。基本上是探测到零假设极端情况的概率。单侧检验 p值在数据集的一侧,由备择假设决定具体在哪一侧。双侧检验 p值在数据的两侧的检验。z统计量与t统计量 当样本容里很小时,样本均值抽样分布不应该采用正态分布,而应采用t分布。z统计里服从正态分
转载
2024-01-02 13:03:57
161阅读
一、简单介绍A/B测试A/B测试为同一个目标制定两个版本,一部分用户使用A版本,另一部分用户使用B版本,记录用户使用数据,比较各个版本对于改进目标的转化效果,选择更好的版本。二、数据集介绍有两种键盘的布局A版和B版,给随机抽取的用户A组和B组使用,这是独立的双样本。两组人数均为25人,记录各组实验者在规定时间内记录打错字的数量。 三、描述统计分析 #A/B测试
import nump
# Python双样本t检验p值的理解
在科学研究和实验分析中,我们常常希望比较两个样本的均值,以确定它们之间是否存在显著差异。在这种情况下,双样本t检验是一种常见的统计方法。这篇文章将向你详细讲解双样本t检验的概念,p值的意义,以及如何使用Python进行相应的分析。
## 什么是双样本t检验
双样本t检验(Two-sample t-test)是一种假设检验方法,用于比较两个样本均值的差异
原创
2024-09-07 04:26:05
421阅读
p值还是 FDR ?差异分析如何筛选显著性差异基因,p value, FDR 如何选经常有同学询问如何筛选差异的基因(蛋白)。已经计算了表达量和p value值,差异的基因(蛋白)太多了,如何筛选。其中最为关键的是需要对p value进行校正。基本概念:零假设:在随机条件下的分布。p值:在零假设下,观测到某一特定实验结果的概率称为p值。假阳性:得到了阳性结果,但这个阳性结果是假的。假阴性:得到了阴
转载
2023-09-18 15:02:22
182阅读
t检验是通过比较不同数据的均值,研究两组数据之间是否存在显著差异。p值是一组数据的均值(以及比这种数据更极端的数据的均值)在另一组数据的均值所代表的总体中出现的概率。当p值越小,说明两者差异越显著,因为这说明一组数据是另一组数据所代表的总体中的样本的可能越小(因为两者的均值差异)。接下来是我转自知乎上的一个通过一个例子来详尽的解析T检验及P值的文章,我看完颇有启发。关于T检验以及各种假设检验的操作
转载
2023-12-12 13:25:03
364阅读
假设检验原理反证法小概率事件在一次试验中是几乎不可能发生的(但在多次重复试验中是必然发生的)假设检验的步骤设置原假设与备择假设;设置显著性水平(通常选择);根据问题选择假设检验方式;计算统计量,并通过统计量获取P值根据P值和显著性水平值,决定接受原假设还是备择假设。原假设备择假设的设置:应当把如果真实成立但误判为不成立后会造成严重后果的命题选为原假设;应当把分析人员想证明正确的命题作为备择假设;应
转载
2024-03-11 15:22:15
166阅读
# 计算 t 值和 p 值的 Python 代码
在统计学中,t 值(t-value)和 p 值(p-value)是评估假设检验结果的重要指标。t 值通常用于确定样本均值与总体均值之间的差异是否显著,而 p 值则表示观察到的结果在原假设为真的情况下出现的概率。本篇文章将通过具体的 Python 代码示例来帮助大家理解如何计算 t 值和 p 值,并阐述其在实际应用中的重要性。
## 什么是 t
IBM SPSS Statistics的比较平均值分析法属于参数型的检验法,是以已知总体分布的前提下,检验样本数据与总体数据的差异,其中包含了平均值、单样本T检验、独立样本T检验、配对样本T检验以及单因素ANOVA检验的分析方法。其中,单样本T检验、独立样本T检验、配对样本T检验都是运用T分布理论来分析差异发生的概率,从而比较两个平均数的差异是否显著的分析方法。那么,这三种T检验的分析方法有什么不
转载
2024-01-31 01:54:22
176阅读
# Python 计算双尾p值的指导
在统计学中,p值用于检验假设的结果。在这里,我将带你了解如何在Python中计算双尾p值。整个过程可以分为几个步骤,接下来我们将通过示例学习实现这一功能。
## 流程概述
以下是计算双尾p值的基本流程:
| 步骤 | 描述 |
|------|------|
| 1 | 导入必要的库 |
| 2 | 准备数据 |
| 3 | 进行t检
原创
2024-10-10 03:46:11
63阅读
独立样本t检验的假定:观测是独立的;每组因变量总体服从正态分布; 对于中等到较大的样本量,绝大部分的非正态分布趋向于对t检验的精确性没有多少影响。 3.每组总体方差相等;适用情况: 当对两个独立样本的感兴趣的一个连续因变量的均值进行比较时,可以使用。原假设: 两组的总体均值相等 ; 如果t检验产生的结果在原假设正确时看起来不可能,也就是结果发生的可能性小于5%,就拒绝原假设。 如果t检验产生的结果
转载
2023-10-10 23:35:58
253阅读
【推断统计】
1. 样本和总体
总体:目标事件的全体
样本:总体的一部分(总体的子集)
2. 推断统计:
用样本数据对总体进行归纳的统计过程
假定:样本对总体具有代表性
3. 假设检验:
两个假设:原假设+备择假设
原假设:表述为一个处理没有影响--(小概率事件)H0
备择假设:表述为该处理有影响 H1
4. 抽样误差:
样本和总体之间的差别(样本越少,样本和总体之间的差别越大)
5
转载
2023-08-10 14:56:46
2399阅读
我们都知道p值是用来说明数据间显著性差别的统计值,p值的由来以及计算方法可谓是非常有意思,所以在这里介绍给大家。 我们从一个经典的例子开始: 小明闲的蛋疼抛硬币玩,他连续抛出一枚硬币5次,并得到了(正 正 正 正 反)的结果,这时小明就想了:“这枚硬币的质量分布一定不均匀!否则我不会抛出4次正面!” &nb
转载
2024-02-05 07:16:55
129阅读
tuple所谓的“不变”是说,tuple的每个元素,指向永远不变
“可变的”tuple
t = (1,[2,3])
t[1][1]='4'
print(t);
# (1, [2, '4'])
要定义一个只有1个元素的tuple
因为括号()既可以表示tuple,又可以表示数学公式中的小括号,这就产生了歧义,因此,Python规定,这种情况下
转载
2023-12-14 12:09:35
135阅读
相信看到这篇文章的同学,一定搜了很多次下面的关键词“T检验”、“Matlab”、“P值”、“T值”网上公式一大堆,含义也都有解释,看完之后觉得T检验就是为我而生的。但是具体怎么用到自己的数据库中?代码到底怎么写?样本输入格式是啥?P值、T值怎么计算?好像并不是很懂,下面举个栗子,帮助大家实操T检验。 首先T检验是用来判断两个样本的差异性有多显著的。如上图所示,比如我们想告诉小猫怎么区分男生和女生
转载
2024-03-06 12:09:20
274阅读
# Python 中计算双尾 P 值的指南
在进行统计分析时,常常需要计算双尾 P 值,以判断样本数据是否显著。本文将详细介绍如何在 Python 中实现这一过程,适合刚入行的小白阅读。我们将通过几个简单的步骤来达到目的,并附上完整的代码和注释。最后还会提供一个类图,帮助你更好地理解这个过程。
## 整体流程
在 Python 中计算双尾 P 值的过程可以划分为以下几个步骤:
| 步骤 |
原创
2024-10-16 05:12:03
182阅读
如君愿,开门见山,直入主题吧!1 t检验1.1 单样本t检验对总体均值的假设检验 单样本 t 检验是最基础的假设检验,利用来自总体的样本数据,推断总体均值于假设的检验值之间是否存在显著差异,是对总体均值的假设检验。 四步骤: 1、原假设:总体均值 = U0 ; 备择假设:总体均值 != U0。 2、计算样本均值、标准差。 3、计算 t 统计量、P值。
转载
2023-10-10 16:46:37
467阅读
# 使用 Python 计算 F 值和 P 值
在统计分析中,F 值和 P 值是检验假设的重要指标。下面,我将为你提供一个简单的流程以及代码示例,帮助你了解如何在 Python 中实现 F 值和 P 值的计算。
## 流程概述
我们将通过以下步骤来计算 F 值和 P 值。在进行线性回归或方差分析时,这些步骤是非常典型的。
| 步骤 | 操作 | 说明
双样本t检验2 Sample T-TEST和成对t检验Paired Test的意思和区别成对t检验Paired Test是对来自同一总体的样本,在不同条件影响下获取的2组样本进行分析,以评价不同条件是否对其有显著影响。不同条件可以是不同存放环境、不同的测量系统等。双样本t检验2 Sample T-TEST是对通过2组样本来评判其是否来自2个“总体均值不同”的总体,即评判样本的制造环境是否产生变化。
转载
2024-05-02 22:20:19
41阅读
数据可视化matplotlib绘图入门为了使用matplotlib来绘制基本图像,需要调用matplotlib.pyplot子库中的plot()函数import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(0,20)
plt.plot(x,.5+x)
plt.plot(x,1+2*x,'--')
plt.show()对数图
转载
2023-09-25 17:48:01
116阅读