import matplotlib.pyplot as plt #画图用 import random import copy import operator #判断列表相等 k=2 #簇数量 data=[(1,2),(2,3),(2,4),(3,3),(10,16)] def show(x): fo
原创 2022-09-10 00:59:19
129阅读
1.MATLAB函数Kmeans使用方法:Idx=Kmeans(X,K)[Idx,C]=Kmeans(X,K) [Idx,C,sumD]=Kmeans(X,K) [Idx,C,sumD,D]=Kmeans(X,K) […]=Kmeans(…,’Param1’,Val1,’Param2’,Val2,…)各输入输出参数介绍:X: N*P的数据矩阵,N为数据个数,P为单个数
转载 2024-01-15 19:11:21
44阅读
并对其内容进行了补充和完善,使代码可以直接运行,运算的原始数据由随机数产生。图示为3个簇,1000个二维变量的分类结果主程序:import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.util.ArrayList; import java.util.Iterator; import
转载 2023-06-01 10:33:55
89阅读
简介通过使用python语言实现KMeans算法,不使用sklearn标准库。 该实验中字母代表的含义如下:p:样本点维度n:样本点个数k:聚类中心个数实验要求使用KMeans算法根据5名同学的各项成绩将其分为3类。数据集数据存储格式为csv,本实验使用数据集如下:实验步骤引入需要的包 本实验只需要numpy和pandas两个包, 其中numpy用于数值计算,pandas用于读取数据。import
1 概述K-means算法是集简单和经典于一身的基于距离的聚类算法采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。2 算法图示假设我们的n个样本点分布在图中所示的二维空间。从数据点的大致形状可以看出它们大致聚为三个cluster,其中两个紧凑一些,剩下那个松散一些,如图所示:我们的目的是为这些数据
第十章 利用k-均值聚类算法对未标注的数据进行分组一.导语聚类算法可以看做是一种无监督的分类方法,之所以这么说的原因是它和分类方法的结果相同,区别它的类别没有预先的定义。簇识别是聚类算法中经常使用的一个概念,使用这个概念是为了对聚类的结果进行定义。聚类算法几乎可以用于所有的对象,并且簇内的对象越相似,效果越好。二.K-均值聚类算法的基本概念K-均值聚类算法它的目的是将数据分成k个簇。它的
转载 2023-11-21 08:59:18
152阅读
先放一段其他大神的理解,讲的已经很清楚了,后面结合代码说说我的理解 在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。 问题 K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K
下面的demo是根据kmeans算法原理实现的demo,使用到的数据是kmeans.txt 1 1.658985 4.285136 2 -3.453687 3.424321 3 4.838138 -1.151539 4 -5.379713 -3.362104 5 0.972564 2.924086
原创 2022-06-05 01:09:08
320阅读
1. Kmeans聚类算法原理     1.1 概述         K-means算法是集简单和经典于一身的基于距离的聚类算法         采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。         该算法认为类簇是由距离靠
转载 2024-08-09 16:06:41
53阅读
刚刚研究了KmeansKmeans是一种十分简单的聚类算法。可是他十分依赖于用户最初给定的k值。它无法发现随意形状和大小的簇。最适合于发现球状簇。他的时间复杂度为O(tkn)。kmeans算法有两个核心点:计算距离的公式&推断迭代停止的条件。一般距採用欧式距离等能够随意。推断迭代停止的条件能够有:1) 每一个簇的中心点不再变化则停止迭代2)全部簇的点与这个簇的中心点的误差平方和(SSE)
转载 2023-05-26 23:49:52
93阅读
## 1 k-Means算法k-Means算法是一种经典的聚类算法,也称为K均值聚类算法。k-Means的工具原理:假设建立一个坐标系,这个坐标系的横坐标是价格,纵坐标是评论。然后根据每个物品的这两项特征将物品放置在该坐标系中,那么如何将这些物品划分为k个类。此时K为自定义。例如,可以定义k为2,既将所有的物品划分为两类。首先,随机选择两类的中心点AB,这两类的称为聚类中心。初始的聚类中心是随机选
Kmeans++算法Kmeans++算法,主要可以解决初始中心的选择问题,不可解决k的个数问题。Kmeans++主要思想是选择的初始聚类中心要尽量的远。做法:1.    在输入的数据点中随机选一个作为第一个聚类中心。2.    对于所有数据点,计算它与已有的聚类中心的最小距离D(x)3.    选择
转载 2023-12-07 15:41:20
34阅读
KMeansPython实现KMeans算法及其可视化
原创 2024-06-16 18:06:37
127阅读
前言:分析体检数据希望不拘泥于Sklearn库中已有的聚类算法,想着改一下Kmeans算法。本着学习的目的,现在开始查看sklearn的源代码。希望能够写成一个通用的包。有必要先交代一下我使用的python版本:python3.9.2 环境:pycharm现在先学习学习Sklearn是如何写的~第一步:找到sklearn的源代码>>> import sys >>&gt
KMeans算法思想基本聚类方法 算法代码算法时间复杂度:时间复杂度:O(T*n*k*m)空间复杂度:O(n*m)n:元素个数,k:第一步中选取的元素个数,m:每个元素的特征项个数,T:第5步中迭代的次数。算法代码:# 注意,这里采用的是完全随机初始化,这样的效果不是很好。因为可能会存在有病态的初始化结果。 # 正确方法应该是从样本中随机选择k个点作为初始点。算法损失函数:平方误差:
转载 2023-12-13 16:24:50
54阅读
K-means是聚类算法中的一种,由于其原理简单,实现方便,收敛速度快,在数据挖掘、模式识别等领域有着广泛的应用。本文先引出K-means的基础概念,比如:闵可夫斯基距离、曼哈顿距离、欧氏距离等;接着介绍K-means的原理,重点阐述了如何确定K值、如何选取初始中心点等;然后介绍K-means的Python实现、K-means的Sklearn实现、泰坦尼克号的聚类具体应用;最后对K-means进行
K-means聚类算法(事先数据并没有类别之分!所有的数据都是一样的)1、概述K-means算法是集简单和经典于一身的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。2、核心思想通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小。k
转载 2023-08-25 17:25:47
313阅读
k-means算法此次的作业是要求我们利用所学知识实现利用python实现k-means算法,首先我们先来简单的介绍一下k-means算法: k-means算法接受输入量k;然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”来进行计算的。算法实现思路k-means算法是一种基于
转载 2023-08-11 22:14:29
84阅读
一、背景煤矿地磅产生了一系列数据: 我想从这些数据中,取出最能反映当前车辆重量的数据(有很多数据是车辆上磅过程中产生的数据)。我于是想到了聚类算法KMeans,该算法思想比较简单。二、算法步骤1、从样本中随机取出k个值,作为初始中心2、以k个中心划分这些数据,分为k个组3、重新计算出每个组的中心,作为新中心4、如果初始中心和新中心不相等,则把新中心作为初始中心,重复2,3。反之,结束注意
转载 2023-08-06 10:30:13
98阅读
算法优缺点:优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据算法思想k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的
  • 1
  • 2
  • 3
  • 4
  • 5