注释:本文翻译自OpenCV3.0.0 document->OpenCV-Python Tutorials,包括对原文档种错误代码的纠正3.13 霍夫变换第一节:霍夫线变换(Hough Line Transform)1.目标理解霍夫变换的概念学习如何使用霍夫变换检测图像中的行学习一下函数:cv2.HoughLines(),cv2.HoughLinesP()2.理论如果可以用数学形式表示该形状
去年三月写过一篇文章,就是这货:车牌提取,基于OpenCV,当时仅做到车牌提取,后来懒惰吧,一拖再拖,拖到现在。接下来做一下字符分割和识别。恩,先上一张车牌吧。1、字符分割分割的话简单,方法也比较多。看网上有人通过不断切割的方式,直到出现理想轮廓,没试过,不知道效果。直接把车牌设置成ROI区域,拷贝成图片,在新的图片中提取轮廓。此处图像预处理与原来不同。除了汉字,字母和数字基本都是一个轮廓,所以对
通过阈值分割可以得到二值图,但往往会出现图像中物体形态不完整,变的残缺,或者有很多噪声点。可以通过形态学处理,使其变得丰满,或者去除掉多余的像素。常用的形态学处理算法包括:腐蚀,膨胀,开运算,闭运算,形态学梯度,顶帽运算和底帽运算。0. 结构元素opencv中可用的结构元素有三种:矩阵,椭圆形,十架kernel = cv2.getStructuringElement(shape,ksize,an
1. 取边界拟合四线交点取中这个是个人感觉自由度最大的,应该也是可以达到的精度上限最高的,也支持图像的旋转,如果筛选直线的方法得当对于线的相交角度也没特殊要求,但是手动计算量也较大;本人实现的取四条直线的方法具有局限性,这里只写思路图片转灰度图 cv::Canny取边界 cv.HoughLinesP拟合直线筛选符合条件的四条边界直线(筛选直线最为麻烦,若图像清晰且边界平行固然好办,但是低像素低画质
http://www.opencv.org.cn/index.php/Hough%E7%BA%BF%E6%AE%B5%E6%A3%80%E6%B5%8Bhttp://baike.baidu.com/view/6825753.htmHough变换原理最直观简单的说明:http://wenku.baidu.com/view/6373b4e69b89680203d825e9.html?from=rec&
目录参考一、直线检测1.1 霍夫变换直线检测——HoughLinesP1.1.1原理1.1.2 HoughlinesP()函数1.1.3 代码1.1.4 检测效果1.2 FLD算法1.2.1 报错AttributeError: module 'cv2.cv2' has no attribute 'ximgproc'1.2.2 FLD有关函数1.2.3 代码实现1.2.4 检测效果二、增强算法 参
环境:Python3.8 和 OpenCV内容:Hough圆检测将直角坐标系中的一个圆映射为新坐标系中的一个点,对于原直角坐标系中的每一个圆,可以对应(a, b, r) 这样一个点,这个点即为新三维中的点。标准法实现步骤: 1.获取原图像的边缘检测图像;2.设置最小半径、最大半径和半径分辨率等超参数;3.根据转化后空间的圆心分辨率等信息,设置计数器N(a, b, r);4.对边缘检测图像的每个白色
转载 2023-12-02 21:01:28
344阅读
直线检测直线检测可以通过OpenCV的HoughLines和HoughLinesP函数来完成,它们仅有的差别是:第一个函数使用标准的Hough变换,第二个函数使用概率Hough变换,即只通过分析点的子集并估计这些点都属于一条直线的概率,这在计算速度上更快。函数原型:HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength
转载 2023-12-27 21:31:33
347阅读
目录c++检测垂直线 检测所有线:python RANSAC直线检测c++C++: void HoughLinesP(InputArray image, OutputArray lines, double rho, double theta, int threshold, double minLineLength=0, double maxLineGap=0 )第一个参数,InputAr
霍夫直线变换介绍霍夫圆检测现实中:example import cv2 as cv import numpy as np # 关于霍夫变换的相关知识可以看看这个博客: def line_detection(image): gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) edges = cv.Canny(gray, 50, 150, apertureSize
直线检测 cv2.HoughLinesP()函数原型:HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength=None, maxLineGap=None)image: 必须是二值图像,推荐使用canny边缘检测的结果图像;rho:线段以像素为单位的距离精度,double类型的,推荐用1.0theta: 线段以弧度为单位
缺陷识别简介:这个项目是我的本科毕业设计,主要针对传送带上的木质圆形工件的缺陷识别和分类,并且进行工件的计数和缺陷工件的计数。这里我主要是识别污渍和划痕缺陷类型污渍:划痕:最后的成果sum:为工件的总个数scratch_num:为含有划痕工件的总个数blot_num:为含有污渍工件的总个数黄颜色圈住的缺陷为划痕蓝颜色圈住的缺陷为污渍简单思路通过边缘检测,得到每个工件的坐标,并计算出工件的中心来标记
转载 2023-10-10 11:01:20
490阅读
文章目录1.前言2.调用摄像头进行实时canny边缘检测3.三种检测方法的分析Sobel边缘检测**Laplacian边缘检测**Canny边缘检测4.参考博文 1.前言计算机中的目标检测与人类识别物体的方式相似。作为人类,我们可以分辨出狗的形象,因为狗的特征是独特的。尾巴、形状、鼻子、舌头等特征综合在一起,帮助我们把狗和牛区分开来。同样,计算机能够通过检测与估计物体的结构和性质相关的特征来识别
转载 2023-10-28 11:51:18
269阅读
使用dlib,OpenCVPython进行人脸识别--检测眼睛,鼻子,嘴唇和下巴前期文章我们分享了如何使用python与dlib来进行人脸识别,本期我们就来更细的来了解一下人脸识别的内容如下图,dlib人脸数据把人脸分成了68个数据点,从图片可以看出,人脸识别主要是识别:人眉,人眼,人鼻,人嘴以及人脸下颚边框,每个人脸的部位都有不同的数据标签从1-68当我们识别出人脸的这68个点,
1.研究背景对本车前方车辆的识别及距离检测是计算机视觉技术在智能网联汽车中的一个重要内容。要想在错综繁杂的交通环境中实现无人驾驶,对行车环境中其他车辆信息的获取是十分重要的。因此,对本车前方车辆的识别及距离检测是智能网联汽车研发和应用过程中必不可少的一个重要技术基础。该系统主要通过摄像头采集前方的道路环境,识别出前方行车环境中的车辆并计算出本车与前方车辆的距离,并将识别结果和测距结果显示在屏幕上,
文章目录1 Motivations2 Basic Equations - 3 Solving Camera Calibration3 实践OpenCV1.获取棋盘格文件目录2. 角点提取1. cv::findChessboardCorners2. cv::TermCriteria3. cv::cornerSubPix4. cv::drawChessboardCorners3.标定1. cv::c
直线检测原理核心要点:图像坐标空间、参数空间、极坐标参数空间 -> (极坐标)参数空间表决给定一个点,我们一般会写成y=ax+b的形式,这是坐标空间的写法;我们也可以写成b=-xa+y的形式,这是参数空间的写法。也就是说,给定一个点,那么经过该点的直线的参数必然满足b=-xa+y这一条件,也就是必然在参数空间中b=-xa+y这条直线上。如果给定两个点,那么这两点确定的唯一的直线的参数,就是参
Python部落(python.freelycode.com)组织翻译,禁止转载,欢迎转发。利用Opencv中的Houghline方法进行直线检测---python语言在图像处理中,霍夫变换用来检测任意能够用数学公式表达的形状,即使这个形状被破坏或者有点扭曲。下面我们将看到利用HoughLine算法来阐述霍夫变化进行直线检测的原理,把此算法应用到特定图像的边缘检测是可取的。Houghline算法基
转载 2024-03-13 22:12:52
107阅读
边缘检测是一种图像处理技术,用于识别图像中目标或区域的边界(边缘)。边缘是图像中最重要的特征之一。我们通过图像的边缘来了解图像的基本结构。因此,计算机视觉处理管道在应用中广泛地使用边缘检测。1.如何检测边缘?边缘的特征是像素强度的突然变化。为了检测边缘,我们需要在邻近的像素中寻找这些变化。来吧,让我们探讨一下OpenCV中可用的两种重要边缘检测算法的使用:Sobel边缘检测和Canny边缘检测。我
简介:1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等)。最基本的霍夫变换是从黑白图像中检测直线(线段)。2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形
  • 1
  • 2
  • 3
  • 4
  • 5