一般情况下,零基础在培训班经过6-9个月的学习,能够成为一个初级的游戏3D建模师。在培训班学习结束后,是一个模型师学习成长之旅的开始,项目技术更新快,市场需求不断变化,还要坚持学习,跟上项目才行,同时夯实自美术基础,美术基础决定了在这个行业能走多远。工作2-3年后能力和水平有很大提升,成为项目中高级的模型师等,薪资也有明显提升。接下来往项目管理方向发展。没有美术基础学习起来会相对较慢,想一边上班一
随着AI的兴起,对机器学习能力的需求急剧增加。从金融到健康等众多行业都在寻求基于机器学习的技术。然而,对于大多数企业和组织来说,定义机器学习模型仍然是一项复杂且资源密集型的工作。在良好的机器学习框架的帮助下,可以减少这些挑战。下面是一些企业和个人可用于构建机器学习模型的最佳开源框架和库。Amazon Machine LearningAmazon Machine Learning为开发机器学习模型
如何利用tensorflow的object_detection api开源框架训练基于自己数据集的模型(Windows10系统)一、环境配置1. Python3.7.x(注:我用的是3.7.3。安装好后把python.exe的路径加入到全局环境变量path中,方便后续命令)2. Tensorflow1.13.1(注:目前暂时还不能用tensorflow2.x,因为开源社区还没有针对Windows1
目标检测是AI的一项重要应用,通过目标检测模型能在图像中把人、动物、汽车、飞机等目标物体检测出来,甚至还能将物体的轮廓描绘出来,就像下面这张图。在动手训练自己的目标检测模型之前,建议先了解一下目标检测模型的原理(见文章:大话目标检测经典模型RCNN、Fast RCNN、Faster RCNN,以及Mark R-CNN),这样才会更加清楚模型训练过程。本文将在我们前面搭建好的AI实战基础环境上(见
TensorFlow教程到目前为止,你一直使用numpy来构建神经网络。现在,我们将引导你使用深度学习框架,改框架将使你可以更轻松地构建神经网络。TensorFlow,PaddlePaddle,Torch,Caffe,Keras等机器学习框架可以极大地加速你的机器学习开发速度。所有这些框架也都有好多文档,你应该随时阅读学习。在此笔记本中,你将学习在TensorFlow中执行以下操作:初始化变量创建
# Python训练模型 ## 介绍 在机器学习和数据科学领域,训练模型是一个关键的步骤。Python作为一种功能强大且易于使用的编程语言,为我们提供了丰富的库和工具来训练和评估模型。本文将介绍Python中常用的训练模型的方法和技巧,并提供相应的代码示例。 ## 选择合适的机器学习算法 在开始训练模型之前,我们首先需要选择合适的机器学习算法。Python中有许多机器学习库可以帮助我们完成这一
原创 2023-09-08 10:25:02
521阅读
【问题描述】毕业设计遇到一个问题:对多种气体回归。为了简化代码,数据导入已经封装成函数,只是需要手动修改气体种类,但每种气体都要单独训练一次,懒得每次训练完从床上爬起来改俩参数重新训练!!【尝试】程序里设置 for 循环,遍历多种气体——会爆内存(训练到第二个模型时电脑就开始卡,每步训练时间很长)【解决方案】使用 argparse 模块和 os.system() 方法第一步丨调用 'argpars
python+框架+模型学习python学习numpyNumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机器学习框架的基础库!基础功能演示 -- 简书argmaxargmax返回的是最大数的索引.argmax有一个参数axis,默认是0,表示第几维的最
现在机器学习逐渐成为行业热门,经过二十几年的发展,机器学习目前也有了十分广泛的应用,如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、DNA序列测序、语音和手写识别、战略游戏和机器人等方面。使用一个高层次的接口设计和训练深学习模型,需要根据你的编程语言,平台和目标应用程的选择一个最适合你需要的深度学习框架,下面我们捋一捋目前业界常用的深度学习框架:Caffe 是由神经网络中
# Python模型训练流程 ## 介绍 在机器学习领域,模型训练是一个非常重要的步骤。通过模型训练,我们可以利用已知的数据来建立一个预测模型,以便我们在未知数据上进行预测或分类。本文将介绍如何使用Python进行模型训练,并帮助刚入行的开发者了解整个流程。 ## 步骤概览 下面是一个模型训练的整体流程图: ```mermaid journey title 模型训练流程
原创 2023-09-25 18:51:05
324阅读
我就废话不多说了,大家还是直接看代码吧~注释讲解版:# Classifier example import numpy as np # for reproducibility np.random.seed(1337) # from keras.datasets import mnist from keras.utils import np_utils from keras.models impor
一、什么是预训练?目前随着数据量爆炸式的增长,靠人工去标注更多数据是非常昂贵,并且也不太现实的。因此预训练的方式就出现了,也逐渐成为了一种主流的方法。那到底什么是预训练呢?简单地说,预训练就是:“使用尽可能多的训练数据,从中提取出尽可能多的共性特征,从而能让模型对特定任务的学习负担变轻。”预训练将学习分成了两步:1)首先将大量低成本收集的训练数据放在一起,经过某种预训方法去学习其中的共性知识 ;2
import keras import numpy as np from keras.applications import vgg16,vgg19,inception_v3,resnet50,mobilenet #加载模型 vgg_model = vgg16.VGG16(weights='imagenet') inception_model = inception_v3.InceptionV3
转载 2024-01-30 00:12:08
100阅读
一、Adaboost1、准备工作:              建立训练样本库              正样本:行人图像,需统一尺寸   &
目标检测分为三个步骤:1、 样本的创建2、 训练分类器3、 利用训练好的分类器进行目标检测。    有了opencv自带的那些xml人脸检测文档,我们就可以用cvLoad()这个函数加载他们,让他们对我们的人脸进行检测,但是,现在生活中还有很多物品需要识别,所以,我们需要自己做个xml的检测文档。一、正负样本的创建1、首先就是图片库了,下载 face 和 nonface 库作为
这篇博客适合初学者了解模型训练是怎么一回事,用最简单的代码实现模型训练,但是你需要一点python的知识和一个你擅长的开发环境(比如:jupyter notebook)总共需要下面几个步骤导入包引入数据数据处理创建模型编译模型传入数据并训练导入包import tensorflow as tf from tensorflow.keras.layers import Dense, Flatten, C
转载 2023-12-15 09:53:26
108阅读
前言使用opencv自带的分类器效果并不是很好,由此想要训练自己的分类器,正好opencv有自带的工具进行训练。本文就对此进行展开。步骤1.查找工具文件;2.准备样本数据;3.训练分类器;具体操作注意,本文是在windows系统实现的,当然也可以在linux系统进行。1.查找工具文件; opencv中的自带的分类器训练工具在开源库中以应用程序的类型呈现的,具体目录如下。 .\openc
1、下载mnist数据集地址:http://yann.lecun.com/exdb/mnist/下面这四个都要下载,下载完成后,解压到同一个目录,我是解压到“E:/fashion_mnist/”这个目录里面,好和下面的代码目录一致解压完成后,需要修改一下文件名,如(修改原因:保持和下面代码一样,避免出现其它问题):修改前:t10k-images.idx3-ubyte修改后:t10k-images-
记录训练过程中的每一步的loss变化if verbose and step % verbose == 0: sys.stdout.write('\r{} / {} : loss = {}'.format( step, total_steps, np.mean(total_loss))) sys.stdout.flush() if verbose: sys.stdout.write('\r') sy
python深度学习》笔记---5.3-1、猫狗分类(使用预训练网络)一、总结一句话总结:【小型图像数据集】:想要将深度学习应用于小型图像数据集,一种常用且非常高效的方法是使用预训练网络。【用卷积层提取的特征】:使用在ImageNet 上训练的VGG16 网络的卷积基从 猫狗图像中提取有趣的特征,然后在这些特征上训练一个猫狗分类器。1、预训练网络(pretrained network)?【预训练
转载 2023-09-17 00:27:11
79阅读
  • 1
  • 2
  • 3
  • 4
  • 5