1、分类是什么?简单来说,分类就是对事物进行区分的过程和方法。在你眼里乖巧的小明是一个好孩子,同时你也想确保他会在学校做一名“好学生”而不是“坏学生”。这里的区分“好学生”和“坏学生”就是一个分类任务,关于这点,达观研究院可以帮你回答小明的疑问。2、K最邻近这句话通常来自家长的劝诫,但它透露着不折不扣的近邻思想。在分类算法中,K最近邻是最普通也是最好理解的算法。它的主要思想是通过离待预测样本最近的
先上官网链接:https://lightgbm.readthedocs.io/en/latest/接着带着问题去学习LGB:1.LGB算法原理是什么2.LGB应用场景是什么?或者说要求数据类型是什么3.参数,调参之类的?一、LGB原理LightGBM (Light Gradient Boosting Machine)是一个实现 GBDT 算法的框架,支持高效率的并行训练,并且具有以下优点:更快的训
转载 2023-07-31 21:54:43
314阅读
# LGB算法Python中的高效机器学习工具 ## 引言 随着数据科学和机器学习的迅速发展,许多算法应运而生,以帮助我们从海量数据中提取有价值的信息。LGB(LightGBM)算法便是其中之一。它以其高效性和快速性取得了广泛的应用,尤其在比赛和工业界。 #### 什么是LightGBM? LightGBM是一个基于树的机器学习算法,它是Microsoft公司推出的一个开源项目。与传统的
原创 2024-09-07 06:24:27
77阅读
文章目录CART回归树Gradient Boosting梯度提升树GBDT算法GBDT树介绍GBDT算法推导GBDT回归算法GBDT回归算法实例GBDT分类算法二元GBDT分类算法多元GBDT分类算法GBDT的正则化GBDT的优缺点XGBoost算法XGBoost算法介绍XGBoost目标函数的推导XGBoost正则化项与回归树分裂规则推导XGBoost算法过程XGBoost算法优点 CART回
LGBM算法定义算法实践其他算法概念Light GBM is a gradient boosting framework that uses tree based learning algorithm。传统的GBDT算法存在的问题:如何减少训练数据 常用的减少训练数据量的方式是down sample。例如在[5]中,权重小于阈值的数据会被过滤掉,SGB在每一轮迭代中用随机的子集训练弱学习器;在[6
转载 2023-09-03 21:47:03
292阅读
摘要本文对lgb的基本原理进行简要概括。基于直方图的节点分裂lgbm使用基于直方图的分裂点选择算法,分裂准则为最小化方差,也即最大化方差增益variance gain: 对比xgb的loss reduction: 可以发现,两者是一致的,不同点在于,xgb的loss reduction包含了正则化因子λ,而lgbm未作正则化,因为lgbm的损失函数为均方误差,因此其二阶梯度hi
转载 2024-01-23 22:24:10
96阅读
一:变量作用域        变量可以是局部域或者全局域。定义在函数内的变量有局部作用域,在一个模块中最高级别的变量有全局作用域。        全局变量的一个特征是除非被删除掉,否则它们的存活到脚本运行结束,且对于所有的函数,他们的值都是可以被访问的。然而局部变量,仅仅只依赖于定义它们的函数现阶段是否处于活
# 教你如何实现lgb回归 python ## 流程概述 在实现“lgb回归 python”这个任务中,我们将使用LightGBM(lgb)这个机器学习库来进行回归分析。整个流程可以分为以下几个步骤: | 步骤 | 操作 | | --- | --- | | 1 | 数据准备 | | 2 | 特征工程 | | 3 | 模型训练 | | 4 | 模型评估 | 接下来我们将详细介绍每一步的具体操作
原创 2024-04-05 04:20:43
73阅读
# Python中LightGBM实现教程 ## 一、整体流程 下面是实现“pythonlgb”的整体流程: ```mermaid pie title 实现"pythonlgb"流程饼状图 "了解LightGBM" : 30 "数据准备" : 20 "模型训练" : 30 "模型评估" : 20 ``` ```mermaid gantt title 实现
原创 2024-05-18 04:31:31
54阅读
# Python 使用 LightGBM(LGB) 的入门指南 在机器学习的领域,LightGBM(Light Gradient Boosting Machine)因其高效和精准的特性备受推崇。对刚入行的小白开发者来说,掌握如何在 Python 中使用 LGB 是一个重要的步骤。本文将通过一个结构化的流程来教会你如何使用 LightGBM,包括环境搭建、数据准备、模型训练和预测。 ## 流程概
原创 2024-09-30 03:51:57
59阅读
目的 在进入logistic回归模型原理介绍之前,我们先来考量一个其是想要解决什么样的问题。二元分类相信大家一定不会陌生,分类过程中其想要解决的问题是0/1的问题,我们把它称作Binary Classification,图像领域中解决的是某个东西是或不是的问题,但如果我想知道的是自信度(Probabilities of Classes)呢,也就是某个东西是人脸的概率。这种软分类(Soft
# Python LGB回归入门指南 在数据科学与机器学习领域,回归分析是一项重要的任务。它用于预测一个连续的数值型变量(目标)与一个或多个自变量之间的关系。LightGBM(Light Gradient Boosting Machine)是一种高效的梯度提升树算法,能够有效处理回归问题。在本文中,我们将讨论如何使用Python中的LightGBM来进行回归分析,提供完整的代码示例,并梳理出一个
原创 9月前
64阅读
小结 xgb小结感觉这里还是应该好好弄弄,真正的理解才能更好的使用,学长说xgb的论坛要更火爆一些,一般提了bug会有很多的大佬回复,但是lgb,哈哈,没人回复。。比谁好用,那就比谁的论坛更加火爆,来啊,比 啊,xgb秒杀全场啊~树的复杂度可以用如树的深度,内部节点个数,叶节点个数等 来衡量。** XGBoost中正则项用来衡量树的复杂度:树的叶子节点个
转载 2024-03-29 22:37:29
36阅读
前言:出自于学校课程数据挖掘与分析布置的实验小作业,案例经典,代码注释较全,供大家参考。题目:现有西瓜挑选数据文件:dataset.txt,编程实现朴素贝叶斯算法,并判断有如下特征的瓜是否好瓜: 青绿,稍蜷,浊响,清晰,凹陷,硬滑。实验数据如下: 要求:1、自行采用一种语言编程实现算法(注意:计算条件概率、判别分类等核心算法需自己编程实现) 2、用课堂例子进行正确性检验 3、用户界面友好,要
1、选择排序选择排序是一种简单直观的排序算法。它的原理是这样:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的后面,以此类推,直到所有元素均排序完毕。算法实现如下:#找到最小的元素def FindSmall(list): min=list[0] for i in range(len(list)): i
文章目录一、电影类别分类1.准备电影数据1.1numpy创建数据集2,处理分类问题2.1分类代码二、约会网站配对效果判定1. 收集数据2. 准备数据2.1 从文本文件中解析数据2.2 可视化数据2.3 归一化数据2.4 测试算法:验证分类器2.5 使用算法:构建完整可用系统三、手写数字识别1. 收集数据2. 准备数据:将图像转换为测试向量3. 分析数据总结 一、电影类别分类 k-近邻算法是一种
logistic回归的一般过程(1)收集数据:采用任意方法收集数据。(2)准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式为最佳。(3)分析数据:采用任意方法对数据进行分析。(4)训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。(5)测试算法:一旦训练步骤完成,分类将会很快。(6)使用算法:首先,我们需要输入一些数据,并将其转化成对应的结构化数
# 如何使用Python实现LightGBM模型参数设置 在数据科学和机器学习的领域,了解如何使用机器学习库是每个开发者必须掌握的技能之一。特别是在处理大数据集时,LightGBM(Light Gradient Boosting Machine)因其出色的性能而备受青睐。本篇文章将详细介绍如何在Python环境中进行LightGBM模型的参数设置,以及整个流程的具体操作步骤。 ## 整体流程概
原创 10月前
64阅读
在数据科学和机器学习的领域,使用 LightGBM(LGB)时,我们经常会遇到将连续特征与离散特征混合使用的问题。解决“lgb 连续 离散 python”的问题能够显著提升模型性能。本文将详细探讨如何应对这一问题,包括版本对比、迁移指南、兼容性处理、实战案例、排错指南和性能优化等内容。 ## 版本对比 在使用 LightGBM 的过程中,不同版本之间的特性存在一些差异。以下是一个版本特性对比表
在使用 LightGBM 进行机器学习时,模型评估的重要性不言而喻。特别是在处理具有复杂性和多样性的任务时,合适的评价指标不仅可以帮助我们更好地理解模型的性能,还能在参数调优时给予有力的支持。随着对 Python 和 LightGBM 的深入探索,我逐渐积累了一些处理“python lgb评价指标”相关问题的经验,接下来我想分享我的一些发现和方法。 ## 问题场景 在一个典型的机器学习项目中,
原创 5月前
36阅读
  • 1
  • 2
  • 3
  • 4
  • 5