python提高GIL(全局解释器锁)首先,Python 和 GIL 没有半毛钱关系,仅仅只是Cpython(解释器)中难以移除GIL。GIL 只对线程有影响,每个线程在执行的过程都需要先获取GIL,保证同一时刻只有一个线程可以执行代码,所以一个程序是多线程,一定是假的多任务。Python使用多进程是可以利用多核的CPU资源的计算密集型:进程(因为不需要等待,线程的话效率不高)io密集型:线程、协
转载
2024-06-06 05:43:56
8阅读
算法(algorithm)本质上是一连串的计算。同一个问题可以使用不同算法解决,但计算过程中消耗的时间和资源可能千差万别。那如何比较不同算法之间的优劣呢?目前分析算法主要从时间和空间两个维度进行。时间维度就是算法需要消耗的时间,时间复杂度(time complexity)是常用分析单位。空间维度就是算法需要占用的内存空间,空间复杂度(space complexity)是常用分析单位。因此,分析算法
转载
2023-09-17 12:31:48
70阅读
python中数组切片[:,i] [i:j:k] [:-i] [i,j,:k]# 逗号“,”分隔各个维度,“:”表示各个维度内的切片,只有:表示取这个维度的全部值,举例说明如下
1.二维数组
X[:,0]取所有行的第0个数据,第二维下标位0的所有数据,第0列(从0开始)
X[:,1] 取所有行的第1个数据
X[:,1:]第一维全部取,即所有行,列上从第一列开始取,不要第0列
X[1,:]
转载
2023-08-07 21:14:49
178阅读
现代科技时代产生和收集的数据越来越多。然而在机器学习中,太多的数据可不是件好事。某种意义上来说,特征或维度越多,越会降低模型的准确性,因为需要对更多的数据进行泛化——这就是所谓的“维度灾难”。降维是一种降低模型复杂性和避免过度拟合的方法。特征选择和特征抽取是两种主要的降维方式。特征选择是从原有特征集中选出一部分子集,而特征抽取是从原有特征集收集一部分信息来构建新的特征子空间。本文将会
在现代的数据处理和信息系统中,"Python AOI 扩大"(Area of Interest,兴趣区域扩大)的挑战屡见不鲜。它涉及如何有效管理和处理大量数据的备份、恢复及其相关的灾难应对机制。以下是对这一问题的深入探讨,结构方面明确。
在备份策略方面,为了确保数据的完整性和可恢复性,我们需要设计一套清晰的流程。下图展示了备份的甘特图和周期计划,确保在特定时间和条件下进行备份,以应对日常管理的需
在python中,我们经常用列表,字典等数据类型进行数据存储或者重新构造一个序列,同时它们之间也有着一些关联关系,接下来我们就对python中常用的几种数据类型进行一个整体性的梳理。区别相同点都相当于一个容器,有存放数据的功能都可以用for ... in 进行循环不同点序列存放的是不同类型的数据,迭代器中存放的是算法。序列是将数据提前存放好,获取数据时通过循环或索引来取数据 ;而迭代器不需要存放数
转载
2024-05-16 19:11:36
18阅读
维度是一组数据的组织形式。数据维度就是在数据之间形成特定关系表达多种含义的一个概念。 一维数据: 一维数据由对等关系的有序或无序数据构成,采用线性方式组织。对应列表、数组和集合等概念。 列表和数组:一组数据的有序结构。 区别: 列表:数据类型可以不同 数组:数据类型相同 二维数据: 二维数据由多个一维数据构成,是一维数据的组合形式。 表格是典型的二维数据。其中,表头是二维数据的一部分 多维数据:
转载
2023-06-14 12:18:19
411阅读
一、数据的维度1.一维数据由对等关系的有序或无序数据构成,采用线性方式组织。 2.列表和数组区别: (1)列表:数据类型可以不同 (2)数组:数据类型相同 3.二维数据由多个一维数据构成,是一维数据的组合形式。表格是典型的二维数据其中,表头是二维数据的一部分。 4.多维数据由一维或二维数据在新维度上扩展形成。 5.高维数据仅利用最基本的二元关系展示数据间的复杂结构。 6.数据维度的python表示
转载
2023-11-15 18:11:27
0阅读
个人手记
注意:在pycharm中不能将文件名命名为已有模块名
一、导入numpy作为np,并查看版本和安装位置import numpy as np
print(np.__version__,'/n',np.__file__)二、在NumPy中,数组这一类又被称为ndarray。
1、ndarray.ndim
指数组的维度,即数组轴(axes)的个数,其数量等于秩(rank)。
通俗地讲,我
转载
2024-01-27 16:28:03
61阅读
一、数据的维度维度:一组数据的组织形式。 数据维度:数据之间形成特定关系表达多种数据含义的基础概念。1、一维数据一维数据:由有对等关系的有序或无序数据构成,采用线性方式组。 python表示:列表和集合表示 列表和数组:都是表达一组数据的有序结构的类型。 区别:列表中元素的数据类型可以不同,而数组中元素数据类型相同。2、二维数据二维数据:由多个一维数据构成,是一维数据的组合形式。 python表示
转载
2023-06-16 15:46:29
441阅读
在Python中进行数据分析会用到一些模块,使用比较多的有Numpy、Matplotlib、pandas这三个基本的库。这一节主要介绍Numpy 库的基本的使用。数据的维度维度:也就是一组数据的组织形式 列表和数组都可以表达一组数据的有序结构,区别在于,列表中的元素类型可以不同,数组中的元素类型补休相同。 一维数据:列表或者集合 二维数据:列表(二维数据由多个一维数据构成,表格是典型的二维数据,表
转载
2023-08-30 14:28:14
77阅读
NumPy库学习一.数据的维度数据的维度是数据的组织形式。一维数据:由对等关系的有序或无序数据构成,采用线性方式组织。例如列表和数组,这两者的区别是列表的数据类型可以不同,数组的数据类型必须相同。二维数据:由多个一维数据构成,是一维数据的组合形式。例如表格是典型的二位数据。多维数据:由一维或二维数据在新维度上扩展形成高维数据:仅利用最基本的二元关系展示数据间的复杂结构。例如json、yaml格式的
转载
2023-08-09 14:57:20
400阅读
1、简介NumPy :一种高效处理ndarray的包, ndarry:存储多维 同类数据2、关于数组维度常用的数组维度 是 1维 (1 行 n 列)、2维(n 行 n 列)、3维(n 块 n 行 n 列),其对应各轴 axis 方向分别编号如下所示: (对于维度的介绍,官网是这么写的“ In NumPy dimensions are called axes”,即维度称为轴。)一维数组其实可以看作是
转载
2023-08-16 10:07:00
411阅读
在学习ndarray数组时,笔者对ndarray数组的两个概念——维度、轴产生了疑惑,故查阅资料仔细理解了一下,现将笔者的理解整理如下,如有不当之处欢迎指正。在前面我们定义或产生多维数组时,例如我们使用a=np.arange(24).reshape(2,4,3)这一行语句生成一个shape为(2,4,3)的多维数组,维度的概念该如何理解呢?首先shape这一属性是描述ndarray数组每一维度的数
转载
2023-08-10 18:50:47
89阅读
N维数据结构(ndarray)一、N维数组的基本概念和常用属性顾名思义,N维数组(ndarray)是一个多维数组,描述了相同类型数据的集合 有很多属性可以描述N维数组,最常用的两个属性分别是数据类型和维度。比如,上一页中,我们用了「整型(int)」和「二维」来描述示例中的数组,依次对应的就是数组的数据类型和维度这两个属性。1)数据类型NumPy数组的 数据类型 指的是数组中存储的元素类型,可以是:
转载
2023-09-14 17:14:47
94阅读
数据的维度维度的定义:一组数据的组织形式一维数据:一维数据由对等关系的有序或无序数据构成,采用线性方式组织。(列表和集合类型)二维数据:二维数据由多个一维数据构成,是一维数据的组合形式。(列表类型)多维数据:多维数据由一维或二维数据在新维度上扩展形成。(列表类型)高维数据:高维数据仅利用最基本的二元关系展示数据间的复杂结构。(字典类型或数据表示格式)NumPy的数组对象ndarrayNumPy的引
转载
2023-08-14 23:20:29
97阅读
# 维度与Python:探索数据科学的奥秘
## 引言
在当今的科技世界中,数据科学是一个不断发展的领域。从大数据分析到人工智能,数据扮演了至关重要的角色。在这个过程中,"维度"是一个关键概念,它涉及到数据的多个方面和特征。本文将探讨什么是维度,以及如何在Python中处理多维数据,最后用一些示例代码来展示相关操作。
## 维度的定义
在数学和统计学中,维度是指一个空间所需的坐标数。在数据
一 、学习思路一览 二、对Numpy的认识多维数组执行计算的一个库,拥有大量的库函数,简化了使用者的操作,使得代码简洁有序。三、数据的维度 维度:一组数据的组织形式。一个数据对应一种含义;多个数据则对应一种或多种含义;而一种含义对应一种维度,因此对于一组数据可能是一维或多维。而数据的维度则是在数据之间形成特定关系,表达多种数
转载
2023-09-03 13:52:53
197阅读
当包含的因子(名义型或解释型因子)是解释变量时,我们关注的重点通常会从预测(建立回归模型)转向组别差异的分析,这种分析法称作方差分析(ANOVA)。ANOVA在各种实验和准实验设计的分析中都有广泛应用。用一个或多个定量变量来拟合和预测另一个定量变量,需要建立回归模型;当分类变量作为解释变量时,通常不会关注预测,而是关注分类变量带来的不同组间的差异,这时用方差分析。1、专业术语 例子:研究不同的治
转载
2023-12-18 19:17:37
120阅读
# 如何扩大Python内存:解决实际问题的有效方法
在使用Python进行数据处理和分析时,内存的管理常常成为瓶颈,尤其是在处理大型数据集时。对于数据科学家和开发者来说,理解如何扩大Python的内存使用能力是至关重要的,这不仅能提高程序的性能,还能确保顺利运行大型项目。
## 一、内存管理的重要性
Python的内存管理机制使得开发人员可以专注于编写代码而无需深度关注底层内存分配。但是,