# Python算法代码案例 ## 目录 1. 简介 2. 算法流程 3. 代码实现 4. 案例分析 5. 总结 ## 1. 简介 算法是一种无监督学习方法,用于将数据集中的样本分为不同的组,每个组内的样本具有相似的特征。Python提供了许多用于的库和算法,如scikit-learn、K-means和DBSCAN等。 本文将教你如何使用Python实现算法,并通过一个
原创 2023-08-01 12:37:08
672阅读
from sklearn.cluster import KMeans from sklearn.externals import joblib import numpy import time import matplotlib.pyplot as plt if __name__ == '__main__': ## step 1: 加载数据 print("step 1: load
1、问题导入假如有这样一种情况,在一天你想去某个城市旅游,这个城市里你想去的有70个地方,现在你只有每一个地方的地址,这个地址列表很长,有70个位置。事先肯定要做好攻略,你要把一些比较接近的地方放在一起组成一组,这样就可以安排交通工具抵达这些组的“某个地址”,然后步行到每个组内的地址。那么,如何确定这些组,如何确定这些组的“某个地址”?答案就是。而本文所提供的k-means聚类分析方法就可以用
转载 2023-07-06 14:19:42
350阅读
实验目的(1)理解聚算法的基本原理。 (2)掌握kmeans算法的原理与实现。实验内容1、数据见 data.mat,编程实现 K means 算法代码 K_MeansMt,并写出详细注释。测试代码如下:load 'data.mat'; [u re]=K_MeansMt(data,3); %最后产生簇标号 re [m n]=size(re); %最后显示后的数据 figure; hol
层次算法实际上分为两:自上而下或自下而上。自下而上的算法在一开始就将每个数据点视为一个单一的,然后依次合并(或聚集)、直到所有合并成一个包含所有数据点的单一。因此,自下而上的层次称为合成HAC。的层次结构用一颗树(或树状图)表示。树的根是收集所有样本的唯一,而叶子是只有一个样本的。 1.首先将每个数据点作为一个单独的进行处理。如果我们的数据集有X个数据点,那么
文章目录介绍KMeans()函数介绍实例导入相关包整理数据手肘法确定分类个数创建模型绘制结果分为3的结果 作者:张双双 介绍sklearn.cluster模块提供了常用的非监督算法。 该模块中每一个算法都有两个变体: 一个是(class)另一个是函数(function)。 实现了fit方法来从训练数据中学习;对来说,训练过程得到的标签数据可以在属性 labels_ 中找到。
层次算法实际上分为两:自上而下或自下而上。自下而上的算法在一开始就将每个数据点视为一个单一的,然后依次合并(或聚集)、直到所有合并成一个包含所有数据点的单一。因此,自下而上的层次称为合成HAC。的层次结构用一颗树(或树状图)表示。树的根是收集所有样本的唯一,而叶子是只有一个样本的。 1.首先将每个数据点作为一个单独的进行处理。如果我们的数据集有X个数据点,那么
一、K-means算法分析31省市消费水平 代码:import numpy as np from sklearn.cluster import KMeans def loadData(filePath): fr = open(filePath,'r+') # r+:以读写的方式打开一个文本文件 lines = fr.readlines() #以readlines方式打开整个
转载 2023-11-02 17:01:48
50阅读
算法原理K-means算法是最常用的一种算法算法的输入为一个样本集(或者称为点集),通过该算法可以将样本进行,具有相似特征的样本为一。针对每个点,计算这个点距离所有中心点最近的那个中心点,然后将这个点归为这个中心点代表的簇。一次迭代结束之后,针对每个簇,重新计算中心点,然后针对每个点,重新寻找距离自己最近的中心点。如此循环,直到前后两次迭代的簇没有变化。假设第一个图作为我们的原始
  题记:最近有幸参与了一个机器学习的项目,我的主要工作是帮助进行数据预处理,期间用Python实现了K-means算法,感觉收获很多特此记录下来和大伙儿分享。 一 机器学习项目的主要流程   机器学习项目的主要流程有五步:  1.数据提取  2.数据清洗  3.特征工程  4.训练模型  5.验证模型并优化  之前讲到的PYTHON爬虫可以算是第一步数据提取里面的内容,
Kmeans算法K均值算法需要输入待的数据和欲的簇数K,主要过程如下: 1.随机生成K个初始点作为质心 2.将数据集中的数据按照距离质心的远近分到各个簇中 3.将各个簇中的数据求平均值,作为新的质心,重复上一步,直到所有的簇不再改变import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotl
转载 2023-05-26 10:24:30
303阅读
一、原理DBSCAN是一种基于密度的算法,这类密度算法一般假定类别可以通过样本分布的紧密程度决定。同一别的样本,他们之间的紧密相连的,也就是说,在该类别任意样本周围不远处一定有同类别的样本存在。 通过将紧密相连的样本划为一,这样就得到了一个类别。通过将所有各组紧密相连的样本划为各个不同的类别,则我们就得到了最终的所有类别结果。x1是核心对象,x2由x1密度直达,x3由x1密度可
# 算法科普及代码示例 ## 引言 算法是机器学习中一种重要的无监督学习技术,旨在将数据分为多个类别或组。通过这种方式,算法能够帮助我们发现数据中的潜在结构和模式。在这篇文章中,我们将介绍两种常用的算法——K均值(K-Means)和层次(Hierarchical Clustering),并提供Python代码示例,帮助你更好地理解聚的基本原理。 ## 算法的基本概念
原创 2024-09-08 04:44:01
45阅读
介绍三聚类分析算法,本篇介绍K均值、层次,下篇介绍图团体(graph community)。聚类分析又称群分析,它是研究样本分类问题的一种统计分析方法,同时也是数据挖掘的一个重要算法。聚类分析以相似性为基础,在一个(cluster)中的样本模式之间比不在同一中的样本模式之间具有更多的相似性K均值算法描述:算法随机将每个样本分配到K中的一,然后计算每个的平均值。接
本文我们继续介绍家族中的另一个成员——谱(Spectral clustering)。谱最早来源于图论,后来由于性能优异,被广泛应用于中。相比K-Means等算法,谱对数据分布的适应性更强(如kmeans要求数据为凸集,谱对数据结构并没有太多的假设要求),效果也很优秀,同时的计算量也小很多(意味着更快的速度),也无需像GMM一样对数据的概率分布做假设,更加难能可贵
前言K-means ,介绍了 K-means 算法以及一些优化改进的算法,通过此了解聚类分析,接下来我们进一步的介绍聚类分析的其他方法。本篇代码可见:Github一、层次\quad\quad 层次技术是第二重要的方法。层次方法对给定的数据集进行层次的分解,直到满足某种条件为止,传统的层次算法主要分为两大类算法:凝聚的层次:AGNES算法(AGglomerative N
转载 2023-08-15 14:48:49
564阅读
前言今天试了下用python实现层级,感觉还是有不少问题。转专业的一只小菜鸡,初学代码,写的很简陋,希望各位大牛能指出不足之处。代码输入是一个长度可选的列表。这里用random随机生成,10个数据,并把数据用字母'a'、'b'等依次标记。算法实现中用树结构存储数据。树的每一个节点都是一个数据集,它的左右子树代表该节点包含的两个数据集。计算所有数据相互的距离(x1.value - x2.valu
引用:Core Concepts — gensim<<自然语言处理入门>>一、简介         文本( text clustering ,也称文档或 document clustering )指的是对文档进行的分 析,被广泛用于文本挖掘和信息检索
算法优缺点:优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据算法思想k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。1.首先我们需要选择一个k值,也就是我们希望把数据分成多少,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据的结果和k的
层次和DBSCAN  前面说到K-means算法,K-Means是一种分散性算法,本节主要是基于数据结构的算法——层次和基于密度的算法——DBSCAN两种算法。1.层次  下面这样的结构应该比较常见,这就是一种层次的树结构,层次是通过计算不同类别点的相似度创建一颗有层次的树结构,在这颗树中,树的底层是原始数据点,顶层是一个的根节点。  创建这样一棵树的方
转载 2023-08-09 13:08:52
749阅读
  • 1
  • 2
  • 3
  • 4
  • 5