一、实验目标1、使用 K-means 模型进行聚类,尝试使用不同的类别个数 K,并分析聚类结果。 2、按照 8:2 的比例随机将数据划分为训练集和测试集,至少尝试 3 个不同的 K 值,并画出不同 K 下 的聚类结果,及不同模型在训练集和测试集上的损失。对结果进行讨论,发现能解释数据的最好的 K 值。二、算法原理首先确定k,随机选择k个初始点之后所有点根据距离质点的距离进行聚类分析,离某一个
转载
2024-08-17 10:03:08
88阅读
聚类分析是指将数据对象的集合分组为由类似的对象组成的多个类的分析过程。基本概念聚类(Clustering)就是一种寻找数据之间内在结构的技术。聚类把全体数据实例组织成一些相似组,而这些相似组被称作簇。处于相同簇中的数据实例彼此相同,处于不同簇中的实例彼此不同。聚类技术通常又被称为无监督学习,与监督学习不同的是,在簇中那些表示数据类别的分类或者分组信息是没有的。数据之间的相似性是通过定义一个距离或者
转载
2023-07-11 14:00:01
1080阅读
作者 | Daniel Bolya Chong Zhou Fanyi Xiao Yong Jae Lee 【导读】在论文《YOLACT:Real-time Instance Segmentation》中,作者提出了一种简洁的实时实例分割全卷积模型,仅使用单个 Titan Xp,以 33 fps 在MS COCO 上实现了 29.8 的 mAP,速度明显优于以往已有的算法。而且,这个结果是
转载
2024-10-11 12:43:25
137阅读
SPSS之聚类分析(图文+数据集)
聚类分析简介
按照个体(记录)的特征将它们分类,使同一类别内的个体具有尽可能高的同质性,而类别之间则具有尽可能高的异质性。为了得到比较合理的分类,首先要采用适当的指标来定量地描述研究对象之间的联系的紧密程度。
假定研究对象均用所谓的“点”来表示。在聚类分析中,一般的规则是将“距离”较小的点归为同一类,将“距离”较大的点归为不同的类。常
原创
2021-09-04 16:37:42
1415阅读
引言聚类分析是一种常用的无监督学习技术,旨在将数据集中的样本分成具有相似特征的组。K均值聚类是其中一种常见的方法,它通过将数据点划分为K个簇,并使每个数据点与其所属簇的中心点距离最小化来实现聚类。本文将介绍如何使用R语言执行K均值聚类,并以鸢尾花(Iris)数据集为例进行说明。数据集介绍鸢尾花数据集是一个经典的多变量数据集,由英国统计学家罗纳德·费舍尔于1936年收集。该数据集包含了150个样本,
转载
2024-07-29 22:55:36
104阅读
1 基础算法 (1) K-means算法:对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。 (2) K-means算法是局部最优解,初始聚类中心一般是随机选择,有可能运行两次的结果稍有不同。 (3) 距离公式常采用欧式距离和余弦相似度公式,前者越小代表距离越小,后者越大代表越相似。2 算法实现import numpy as np
转载
2023-06-21 21:47:55
384阅读
### 在 PyCharm 中实现简单数据分析实例
在现代数据分析过程中,Python 是一种非常流行的编程语言。PyCharm 是一个强大的集成开发环境,非常适合进行 Python 开发和数据分析。本文将带你一步步实现一个简单的数据分析实例,帮助你熟悉数据分析的基本流程。
#### 数据分析流程概述
以下是实现简单数据分析的流程,具体步骤如下:
| 步骤 | 描述
SLS机器学习最佳实战:时序异常检测和报警前言第一篇文章SLS机器学习介绍(01):时序统计建模上周更新完,一下子炸出了很多潜伏的业内高手,忽的发现集团内部各个业务线都针对时序分析存在一定的需求。大家私信问我业务线上的具体方法,在此针对遇到的通用问题予以陈述(权且抛砖引玉,希望各位大牛提供更好的建议和方法):数据的高频抖动如何处理?在业务需求能满足的条件下,进可能的对数据做聚合操作,用窗口策略消除
转载
2023-08-24 22:55:45
19阅读
一、导入库
import plotly as py
from sklearn.cluster import KMeans
import warnings
import os
warnings.filterwarnings("ignore")
py.offline.init_notebook_mode(connected = True)
# for basic mathematics operati
# nc数据python聚类分析
## 引言
在数据分析和机器学习领域,聚类是一种常用的技术,用于将数据集中的样本按照相似性进行分组。聚类分析可以帮助我们发现数据集中的潜在模式和结构,从而更好地理解数据。在本文中,我们将介绍如何使用Python进行聚类分析,并以nc数据为例进行实际操作。
## 聚类分析概述
聚类分析是一种无监督学习的方法,不需要预先标记的训练数据。它通过计算样本之间的相似性,
原创
2024-02-02 11:22:44
87阅读
编程本身是跟年龄无关的一件事,不论你现在是十四五岁,还是四五十岁,如果你热爱它,并且愿意持续投入其中,必定会有所收获。本文就来自编程教室一位“小”读者的投稿(互助学习1群里的同学应该对作者的名字很熟悉吧)。我看着他不停地产出新的代码和技术文章,不禁感叹“后生可畏”。这是一个爬虫基础分析和操作的开发案例,在此分享给大家。当我在电脑上需要翻译一个单词时,我会这样做:打开浏览器 => 打开百度翻译
SPSS之聚类分析
转载
2021-08-31 10:55:05
2895阅读
(2017-04-17 银河统计)聚类分析又称群分析,它是研究(样品或指标)分类问题的一种多元统计方法,也是数据挖掘技术的基本方法。所谓类,通俗地说,就是指相似元素的集合。聚类分析起源于分类学,在考古的分类学中,人们主要依靠经验和专业知识来实现分类。随着生产技术和科学的发展,人类的认识不断加深,分类越来越细,要求也越来越高,有时光凭经验和专业知识是不能进行确切分类的,往往需要定性和定量分析结合起来
转载
2023-08-15 16:58:48
167阅读
# 使用 Python 进行数据模糊聚类分析的入门指南
在现代数据科学中,聚类分析是一种常用的无监督学习方法,它能够将相似的对象分组。模糊聚类是聚类分析的一种变种,它允许数据点属于多个聚类,而不仅仅是一个。本文将带领你学习如何使用 Python 进行数据模糊聚类分析。
## 流程概述
在进行模糊聚类分析之前,我们需要遵循一个系统的流程。下面是实现流程的概述:
| 步骤 | 描
聚类分析是一个迭代的过程对于n个p维数据,我们最开始将他们分为n组每次迭代将距离最近的两组合并成一组若给出需要聚成k类,则迭代到k类是,停止 计算初始情况的距离矩阵一般用马氏距离或欧式距离个人认为考试只考 1,2比较有用的方法是3,4,5,8 最喜欢第8种 距离的计算 欧式距离 距离的二范数 马氏距离 对于X1, X2 均属于N(u, Σ)
转载
2023-10-12 16:02:46
208阅读
判别与聚类的比较:聚类分析和判别分析有相似的作用,都是起到分类的作用。判别分析是已知分类然后总结出判别规则,是一种有指导的学习;聚类分析则是有了一批样本,不知道它们的分类,甚至连分成几类也不知道,希望用某种方法把观测进行合理的分类,使得同一类的观测比较接近,不同类的观测相差较多,这是无指导的学习。 所以,聚类分析依赖于对观测间的接近程度(距离)或相似程
转载
2023-12-03 13:46:39
114阅读
聚类分析数据聚类理论理论一、聚类定义二、聚类与分类区别三、聚类分析的目的四、聚类主要方法 数据聚类理论理论一、聚类定义数据聚类 ( Cluster analysis )是指根据数据的内在性质将数据分成一些聚合类,每一聚合类中的元素尽可能具有相同的特性,不同聚合类之间的特性差别尽可能大。聚类分析是研究“物以类聚”的一种科学有效的方法,由实验测试得到的数据是原始数据,原始数据是没有进行分类的、无规律
转载
2023-08-30 08:43:16
217阅读
聚类是数据挖掘描述任务的一个重要组成部分。数据挖掘任务包括描述性任务和预测性任务两种。描述性任务包括聚类、关联分析、序列、异常检测等,预测性任务包括回归和分类。聚类:将数据对象划分为若干类,同一类的对象具有较高的相似度,不同类的对象相似度较低。从这个简单的描述中,可以看出聚类的关键是如何度量对象间的相似性。较为常见的用于度量对象的相似度的方法有距离、密度等。1 基于距离度量对象相似性的思想凡是满足
转载
2023-12-03 20:33:30
74阅读
【[2020.6] 数据挖掘:基于Spark框架的K-Means聚类2】在Iris数据集上借助pyspark实现K-Means聚类Iris(鸢尾花)数据集Iris数据集简介Iris数据集下载和处理基于pypark的K-Means 聚类实验与参数分析Spark组件MLlib实验步骤与参数分析实验代码 Win10下pyspark环境的配置请参考上篇博文:【[2020.6] 数据挖掘:基于Spark框
转载
2024-01-28 11:07:20
160阅读
聚类就是将数据对象分组成多个类或者簇,划分的原则是在同一个粗中的对象之间具有较高的相似度,而不同簇中的对象差别较大。属于一种无指导的学习方法。 好的聚类算法应该满足以下几个方面:(1) 可伸缩型:无论对小数据量还是大数据量应该都是有效的。(2)
转载
2023-08-10 01:49:55
449阅读