每天学习一点点,开始啦!记录自己的成长史,哈哈哈???导入的路径书写格式:直接复制路径在路径前加字母r,如:pd.read_csv(r'C:\Program Files');将复制的路径的下划线改为向左的下划线,如:pd.read_csv('C:/Program Files');基本思路:导入需要用到的库导入数据集,探索数据对数据进行预处理提取标签和特征矩阵,分测试集和训练集导入模型,粗略地看一下
转载
2024-04-04 06:53:12
62阅读
本文用通俗易懂的方式来讲解分类树中的回归树,并以“一维回归的图像绘制”和“泰坦尼克号幸存者预测”两个例子来说明该算法原理。以下是本文大纲: 1 DecisionTreeRegressor 1.1
重要参数,属性及接口 criterion 1.2 交叉验证 2
实例:一维回归的图像绘制 3
实例:泰坦尼克号幸存
转载
2024-06-05 22:16:58
54阅读
目录前置信息1、决策树2、样本数据决策树分类算法1、构建数据集2、数据集信息熵3、信息增益4、构造决策树5、实例化构造决策树6、测试样本分类后置信息:绘制决策树代码 前置信息1、决策树决策树是一种十分常用的分类算法,属于监督学习;也就是给出一批样本,每个样本都有一组属性和一个分类结果。算法通过学习这些样本,得到一个决策树,这个决策树能够对新的数据给出合适的分类2、样本数据假设现有用户14名,其个
转载
2023-07-28 16:37:33
151阅读
1 什么是决策树决策树(Decision Tree)是一种基本的分类与回归方法,本文主要讨论分类决策树。决策树模型呈树形结构,在分类问题中,表示基于特征对数据进行分类的过程。它可以认为是if-then规则的集合。每个内部节点表示在属性上的一个测试,每个分支代表一个测试输出,每个叶节点代表一种类别。 决策树的优点: 1)可以自学习。在学习过程中不需要使用者了解过多的背景知识,只需要对训练数据进行
转载
2023-07-21 18:18:48
123阅读
[本文内容参考Peter Harrington《机器学习实战》] 最近工作有点忙,感觉自己有点懈怠了,要坚持! 前面几篇博客介绍了决策树的理论知识机器学习之路——决策树(1),机器学习之路——决策树算法(2),机器学习之路——决策树剪枝(3) ,学习理论的目的最终为了解决实际问题,今天来一起看看如何用Python来实现决策树算法。话不多说,直接上代码。 首先,实现计算信息增益的部分代码。
转载
2024-03-01 14:27:10
62阅读
决策树算法1 概述2 算法特点3 算法原理4 构造决策树4.1 决策树的生成算法(1)熵(2)样本集合D对特征A的信息增益(ID3)(3)样本集合D对特征A的信息增益比(C4.5)(4)样本集合D的基尼指数(CART)4.2 决策树的剪枝5 python实现 1 概述 决策树是一种基本的分类与回归方法。这里主要讨论用于分类的决策树。2 算法特点优点:计算复杂度不高,输出结果易于理解,对中间值的
转载
2023-08-10 13:29:02
74阅读
决策树的特点决策树的用途决策树的适用范围数据类型特征可以连续和离散 因变量分类时是离散,回归时是连续算法支持模型树结构特征选择连续值处理缺失值处理剪枝ID3分类多叉树信息增益不支持不支持不支持C4.5分类多叉树信息增益比支持支持支持CART分类,回归二叉树基尼系数,均方差支持支持支持决策树的优点1)简单直观,生成的决策树很直观。 2)基本不需要预处理,不需要提前归一化,处理缺失值。 3)使用决策树
转载
2024-05-10 16:30:46
86阅读
## 使用决策树预测内容的科普文章
决策树是一种广泛应用于数据挖掘和机器学习领域的预测工具。它通过构建树形结构来进行决策,形成从根节点到叶节点的路径,最终将复杂的问题转化为多个简单的判断。在这篇文章中,我们将介绍如何在 Python 中使用决策树进行预测,并辅助通过图示帮助理解其工作原理。
### 决策树的基本原理
决策树使用一系列问题的答案作为决策的依据,以逐步划分数据集。每个节点代表一个
原创
2024-08-01 12:10:01
58阅读
1.决策树的简介 2.决策是实现的伪代码 “读入训练数据”
“找出每个属性的可能取值”
“递归调用建立决策树的函数”
“para:节点,剩余样例,剩余属性”
if “剩余属性个数为0"
return most_of_result
else if “剩余样例都属于同一个分类(yes/no)"
return yes/no
转载
2024-02-21 19:30:48
53阅读
决策树原理以及python实现1. 决策树的概念1.1 什么是决策树1.2 决策树的相关概念2. 决策树的构建2.1 特征选择方法2.2 ID3算法2.2.1 ID3算法例题2.2.2 ID3算法缺点2.3 C4.5算法2.3.1 C4.5算法例题3. 决策树剪枝3.1 决策树的剪枝3.2决策树剪枝算法3.3决策树剪枝流程4决策树的python实现 1. 决策树的概念 决策树是一个分类与回归的算
转载
2023-08-04 21:14:26
167阅读
目录前言一、基本概念1. 决策树回归的原理2. 构建决策树回归模型的步骤3. 决策树回归的优缺点4. 决策树回归的应用场景二、实例前言决策树回归(Decision Tree Regression)是一种常用的机器学习算法,用于预测连续型变量的取值。它基于树结构来对数据进行建模和预测,通过将数据集划分为不同的区域,并在每个区域内预测一个常数值来实现回归任务。在本文中,我将详细介绍决策树回归的原理、构
转载
2024-06-12 08:54:39
0阅读
最近布置了个课堂作业,用python实现决策树算法 。整了几天勉勉强强画出了棵歪脖子树,记录一下。大体思路:1.创建决策树My_Decision_Tree类,类函数__init__()初始化参数、fit()进行决策树模型训练、predict()进行预测、evaluate()进行模型评估、save_model()保存模型(csv格式)、load_model()加载模型、show_tree(
转载
2023-06-01 16:43:15
163阅读
决策树理解:所谓决策树,就是根据树结构来进行决策。 举个例子,小明的妈妈去上海人民公园相亲角为儿子物色相亲对象,广场上数百名适婚年龄男女的家长自发来到这里,手里拿着自家孩子的基本资料。小明妈为了选到一个理想的儿媳妇,在看到其他人手中的基本资料后,根据自己内心中各项情况的重要程度(从高到低分别是性别,学历,颜值,房子),依次进行判断:性别是否是女孩子? &n
转载
2023-06-29 20:58:54
131阅读
在构造决策树时,我们需要解决的第一个问题是,当前数据集上哪个特征在划分数据类型时起决定性作用。为了找到决定性的特征,划分出最好的结果,我们必须评估每个特征。完成测试之后,原始数据集就被划分为几个数据子集。这些数据子集会分布在第一个决策点的所有分支上。如果某个分支下的数据属于同一类型,则无需进一步对数据集进行分割。如果数据子集内的数据不属于同一类型,则需要重复划分数据子集的过程。如何划分子集的算法和
转载
2024-06-13 23:52:56
11阅读
文章目录一、概述二、决策树的构建准备工作1.特征选择1.1 香农熵及计算函数1.2 信息增益2. 数据集最佳切分函数3. 按照给定列切分数据集三、递归构建决策树1. ID3算法2. 编写代码构建决策树四、决策树的存储五、使用决策树执行分类 一天,小迪与小西想养一只宠物。小西:小迪小迪,好想养一只宠物呀,但是不知道养那种宠物比较合适。小迪:好呀,养只宠物会给我们的生活带来很多乐趣呢。不过养什么
转载
2024-02-04 20:52:01
211阅读
数据分析入门与实战 公众号: weic2c目录1 决策树/判定树(decision tree)2 构造决策树的基本算法:判定顾客对商品购买能力3 基于python代码的决策树算法实现:预测顾客购买商品的能力4 完整项目下载回复公众号“决策树”获取。1 决策树/判定树(decision tree)1 决策树(Dicision Tree)是机器学习有监督算法中
转载
2023-11-07 07:32:54
129阅读
一、介绍决策树是一种常见的分类模型,在金融分控、医疗辅助诊断等诸多行业具有较为广泛的应用。决策树的核心思想是基于树结构对数据进行划分,这种思想是人类处理问题时的本能方法。决策树的主要优点:具有很好的解释性,模型可以生成可以理解的规则。可以发现特征的重要程度。模型的计算复杂度较低。决策树的主要缺点:模型容易过拟合,需要采用减枝技术处理。不能很好利用连续型特征。预测能力有限,无法达到其他强监督模型效果
转载
2023-10-17 22:40:19
74阅读
决策树调参记录一下决策树调参,在所有模型进行调参前,都应该熟悉算法的思路流程,这样才能进行更好的调参。 决策树分为回归树和分类树,回归树与分类树在Python的sklearn中分别对应着两个不同的函数,其中回归树为:DecisionTreeRegressor 分类树为:DecisionTreeClassifier。 虽然说函数名字不同,但是这两个函数的参数其实大差不大。参数名含义criterion
转载
2023-08-03 13:18:16
59阅读
文章目录一、直观理解决策树二、熵的作用三、信息增益四、决策树构造实例4.1 问题描述4.2 根节点构造五、信息增益率和GINI系数5.1 信息增益存在的问题5.2 信息增益率5.3 GINI系数六、连续值特征划分七、剪枝方法(预剪枝和后剪枝)八、回归问题预测思路九、Python代码实现决策树9.1 导入所需要的库9.2 构建数据集9.3 函数编写9.4 测试算法效果十、SkLearn库实现决策树
转载
2023-10-02 20:55:05
636阅读
机器学习实践
@目录决策树IMDB数据集电影评测分类(二分类问题)1. 数据集讲解:2. 代码实现:a) 取出数据集:b) 数据处理:决策树IMDB数据集电影评测分类(二分类问题)1. 数据集讲解:该数据集是IMDB电影数据集的一个子集,已经划分好了测试集和训练集,训练集包括25000条电影评论,测试集也有25000条,该数据集