继上一期说完如何选择最优划分属性的原理,这期主要说说划分数据的Python实现1. 划分数据集def splitDataSet (dataSet, divFeat, value) copyDataSet = [] for featVec in dataSet : if featVec[divFeat] == value : reducedFeatVe
决策树分类与上一篇博客k近邻分类的最大的区别就在于,k近邻是没有训练过程的,而决策树是通过对训练数据进行分析,从而构造决策树,通过决策树来对测试数据进行分类,同样是属于监督学习的范畴。决策树结果类似如下图:图中方形方框代表叶节点,带圆边的方框代表决策节点,决策节点与叶节点的不同之处就是决策节点还需要通过判断该节点的状态来进一步分类。那么如何通过训练数据来得到这样的决策树呢?这里涉及要信息论中一个
目录算法简单介绍特征选择信息增益信息增益比基尼指数决策树的生成ID3算法C4.5算法CART算法决策树的剪枝介绍三种算法比较 算法简单介绍决策树是一种基本的分类与回归算法,本文介绍该算法的分类应用。在分类过程中,可以看作if-then规则的集合,也可以看作是特征空间与类空间上的条件概论分布。决策树学习,包括三个步骤:特征选择、决策树的生成、决策树的剪枝,利用训练数据,根据损失函数最小化原则构建树
1、决策树简介决策树(decision tree):是一种基本的分类与回归方法,此处主要讨论分类的决策树决策树通常有三个步骤:特征选择、决策树的生成、决策树的修剪。在分类问题中,表示基于特征对实例进行分类的过程,可以认为是if-then的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。用决策树分类:从根节点开始,对实例的某一特征进行测试,根据测试结果将实例分配到其子节点,此时每个子节点
文章目录一、决策树二、构建工作2.1 特征选择2.1.1 香农熵2.1.2 信息增益2.2 剪枝操作2.2.1预剪枝2.2.2后剪枝三、代码讲解3.1构建数据集3.2建立完整决策树3.3计算信息熵3.4计算信息增益3.5调用classify手写分类器3.6调用matlab使可视化3.7启动类3.7运行结果四、使用Graphviz可视化决策树4.1 安装Pydotplus4.2 安装Grphvi
转载 2023-10-06 19:06:19
404阅读
1、介绍决策树(decision tree),每个分支都是需要通过条件判断进行划分的,解决分类和回归问题的方法。策略 正则化的极大似然函数。 此外,从所有可能的决策树选取最优决策树是NP完全问题,实际中学习算法采用启发式方法,近似解决最优化问题。学习算法三要素: 特征选择、决策树生成、剪枝。决策树可看作 if-then 规则的集合。把决策树看作对特征空间的划分,那么它表示了给定特征条件下类的条件
1、剪枝由于悲观错误剪枝 PEP (Pessimistic Error Pruning)、代价-复杂度剪枝 CCP (Cost-Complexity Pruning)、基于错误剪枝 EBP (Error-Based Pruning)、最小错误剪枝 MEP (Minimum Error Pruning)都是用于分类模型,故我们用降低错误剪枝 REP
转载 2024-08-17 09:11:56
94阅读
# Python决策树结果输出方案 ## 引言 决策树是一种常用的机器学习模型,适合用于分类和回归任务。其结构清晰、易于理解以及便于可视化等优点使得其成为许多数据分析场景的优选。然而,仅仅构建决策树并不足够,还需要有效地输出模型的结果,以便于后续的分析、解释决策支持。本文将详细介绍如何在Python中构建决策树并输出结果。 ## 方案概述 本文将使用`sklearn`库来实现决策树,并通
原创 8月前
74阅读
决策树算法决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。决策树算法构造决策树来发现数据中蕴涵的分类规则.如何构造精度高、规模小的决策树决策树算法的核心内容。决策树构造可以分两步进行。第一步,决策树的生成:由训练样本集生成决策树的过程。一般情况下,
概述: 最近通过《机器学习实战》这本书学习机器学习的相关算法,此书在第三章讲到了决策树,此算法涉及的数据准备等步骤较多,所以在此进行整理统一,以便日后温习。算法思想:决策树算法是分类算法的一种,其大致过程是通过已有数据构造决策树,再通过决策树对新输入的数据进行分类。通过已有数据构造决策树时需要注意,由于这属于监督学习,我们必须预先知道已有数据的分类结果。数据准备:此算法需要把已有数据处理成pyth
决策树的优缺点优点:1.计算复杂度不高(对比KNN),顾运算较快 2.结果容易可视化(即书中可视化部分的代码) 3.对缺失值不敏感,能处理不相关特征的数据 4.适合处理数值型和标称型数据(什么是数值型和标称型?:https://www.jianshu.com/p/500c2918723f)缺点:1.不支持在线学习。即在新样本导入的时候,需要重建决策树。 2.容易过拟合。但是决策森林可以有效减少过拟
# Python决策树划分结果的实现 ## 1. 概述 在机器学习中,决策树是一种常用的分类和回归算法。决策树通过一系列的判断条件对数据进行分割,并在每个分割节点上预测具体的类别或数值。在本文中,我们将探讨如何使用Python实现决策树的划分结果。 ## 2. 实现步骤 下面是实现决策树划分结果的步骤流程表格: | 步骤 | 描述 | | --- | --- | | 1 | 导入所需的库和数
原创 2023-10-15 06:49:42
45阅读
目录前言一、基本概念1. 决策树回归的原理2. 构建决策树回归模型的步骤3. 决策树回归的优缺点4. 决策树回归的应用场景二、实例前言决策树回归(Decision Tree Regression)是一种常用的机器学习算法,用于预测连续型变量的取值。它基于树结构来对数据进行建模和预测,通过将数据集划分为不同的区域,并在每个区域内预测一个常数值来实现回归任务。在本文中,我将详细介绍决策树回归的原理、构
参数解析参数DecisionTreeClassifierDecisionTreeRegressor特征选择标准criterion可以使用"gini"或者"entropy",前者代表基尼系数,后者代表信息增益。一般说使用默认的基尼系数"gini"就可以了,即CART算法。除非你更喜欢类似ID3, C4.5的最优特征选择方法。可以使用"mse"或者"mae",前者是均方差,后者是和均值之差的绝对值之和
Scikit-Learn(决策树)可以用于方法分类和回归。一、分类sklearn.tree.DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fra
转载 2024-05-03 11:39:33
114阅读
Matplotlib优势:Matlab的语法、python语言、latex的画图质量(还可以使用内嵌的latex引擎绘制的数学公式) 本节课接着上一节课,来可视化决策树,用Matplotlib注解绘制树形图1 Matplotlib 注解Matplotlib提供了一个注解工具:annotations,可以在数据图形上添加文本工具。 Matplotlib实际上是一套面向对象的绘图库,它所绘制的图表
转载 2023-08-15 15:31:24
250阅读
Python中使用Matplotlib注解绘制树形图本节将学习如何编写代码绘制如下图所示的决策树。1、Matplotlib注解 Matplotlib提供了一个注解工具annotations,非常有用,可以在数据图形上添加文本注释。注解通常用于解释数据的内容。#使用文本注解绘制树节点 import matplotlib.pyplot as plt #定义文本框和箭头格式 decisionNode
决策树 算法优缺点: 优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关的特征数据 缺点:可能会产生过度匹配的问题 适用数据类型:数值型和标称型 算法思想: 1.决策树构造的整体思想: 决策树说白了就好像是if-else结构一样,它的结果就是你要生成这个一个可以从根开始不断判断选择到叶子节点的,但是呢这里的if-else必然不会是让我们认为去设置的,我们要做的是提供一种方
转载 2023-06-28 15:18:00
231阅读
决策树决策树在周志华的西瓜书里面已经介绍的很详细了(西瓜书P73-P79),那也是我看过讲的最清楚的决策树讲解了,我这里就不献丑了,这篇文章主要是分享决策树的代码。在西瓜书中介绍了三种决策树,分别为ID3,C4.5和CART三种决策树,三种出了分裂的计算方法不一样之外,其余的都一样,大家可以多看看书,如果有什么不清楚的可以看看我的代码,决策树的代码算是很简单的了,我有朋友面试的时候就被要求写决策
转载 2023-08-09 14:44:43
271阅读
决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树尤其在以数模型为核心的各种集成算法中表现突出。开放平台:Jupyter lab根据菜菜的sklearn课堂实效生成一棵决策树。三行代码解决问题。from sklearn import tree #导入需要的模块 clf =
  • 1
  • 2
  • 3
  • 4
  • 5